ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpo Unicode version

Theorem dfmpo 6309
Description: Alternate definition for the maps-to notation df-mpo 5949 (although it requires that  C be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpo.1  |-  C  e. 
_V
Assertion
Ref Expression
dfmpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    C( x, y)

Proof of Theorem dfmpo
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mpompts 6284 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( w  e.  ( A  X.  B
)  |->  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C )
2 vex 2775 . . . . 5  |-  w  e. 
_V
3 1stexg 6253 . . . . 5  |-  ( w  e.  _V  ->  ( 1st `  w )  e. 
_V )
42, 3ax-mp 5 . . . 4  |-  ( 1st `  w )  e.  _V
5 2ndexg 6254 . . . . . 6  |-  ( w  e.  _V  ->  ( 2nd `  w )  e. 
_V )
62, 5ax-mp 5 . . . . 5  |-  ( 2nd `  w )  e.  _V
7 dfmpo.1 . . . . 5  |-  C  e. 
_V
86, 7csbexa 4173 . . . 4  |-  [_ ( 2nd `  w )  / 
y ]_ C  e.  _V
94, 8csbexa 4173 . . 3  |-  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C  e.  _V
109dfmpt 5757 . 2  |-  ( w  e.  ( A  X.  B )  |->  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C )  =  U_ w  e.  ( A  X.  B ) { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }
11 nfcv 2348 . . . . 5  |-  F/_ x w
12 nfcsb1v 3126 . . . . 5  |-  F/_ x [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C
1311, 12nfop 3835 . . . 4  |-  F/_ x <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C >.
1413nfsn 3693 . . 3  |-  F/_ x { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >. }
15 nfcv 2348 . . . . 5  |-  F/_ y
w
16 nfcv 2348 . . . . . 6  |-  F/_ y
( 1st `  w
)
17 nfcsb1v 3126 . . . . . 6  |-  F/_ y [_ ( 2nd `  w
)  /  y ]_ C
1816, 17nfcsb 3131 . . . . 5  |-  F/_ y [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C
1915, 18nfop 3835 . . . 4  |-  F/_ y <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C >.
2019nfsn 3693 . . 3  |-  F/_ y { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >. }
21 nfcv 2348 . . 3  |-  F/_ w { <. <. x ,  y
>. ,  C >. }
22 id 19 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  w  =  <. x ,  y >. )
23 csbopeq1a 6274 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C  =  C )
2422, 23opeq12d 3827 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >.  =  <. <.
x ,  y >. ,  C >. )
2524sneqd 3646 . . 3  |-  ( w  =  <. x ,  y
>.  ->  { <. w ,  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }  =  { <. <. x ,  y
>. ,  C >. } )
2614, 20, 21, 25iunxpf 4826 . 2  |-  U_ w  e.  ( A  X.  B
) { <. w ,  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
271, 10, 263eqtri 2230 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   _Vcvv 2772   [_csb 3093   {csn 3633   <.cop 3636   U_ciun 3927    |-> cmpt 4105    X. cxp 4673   ` cfv 5271    e. cmpo 5946   1stc1st 6224   2ndc2nd 6225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator