ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpo Unicode version

Theorem dfmpo 6278
Description: Alternate definition for the maps-to notation df-mpo 5924 (although it requires that  C be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpo.1  |-  C  e. 
_V
Assertion
Ref Expression
dfmpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    C( x, y)

Proof of Theorem dfmpo
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mpompts 6253 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( w  e.  ( A  X.  B
)  |->  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C )
2 vex 2763 . . . . 5  |-  w  e. 
_V
3 1stexg 6222 . . . . 5  |-  ( w  e.  _V  ->  ( 1st `  w )  e. 
_V )
42, 3ax-mp 5 . . . 4  |-  ( 1st `  w )  e.  _V
5 2ndexg 6223 . . . . . 6  |-  ( w  e.  _V  ->  ( 2nd `  w )  e. 
_V )
62, 5ax-mp 5 . . . . 5  |-  ( 2nd `  w )  e.  _V
7 dfmpo.1 . . . . 5  |-  C  e. 
_V
86, 7csbexa 4159 . . . 4  |-  [_ ( 2nd `  w )  / 
y ]_ C  e.  _V
94, 8csbexa 4159 . . 3  |-  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C  e.  _V
109dfmpt 5736 . 2  |-  ( w  e.  ( A  X.  B )  |->  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C )  =  U_ w  e.  ( A  X.  B ) { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }
11 nfcv 2336 . . . . 5  |-  F/_ x w
12 nfcsb1v 3114 . . . . 5  |-  F/_ x [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C
1311, 12nfop 3821 . . . 4  |-  F/_ x <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C >.
1413nfsn 3679 . . 3  |-  F/_ x { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >. }
15 nfcv 2336 . . . . 5  |-  F/_ y
w
16 nfcv 2336 . . . . . 6  |-  F/_ y
( 1st `  w
)
17 nfcsb1v 3114 . . . . . 6  |-  F/_ y [_ ( 2nd `  w
)  /  y ]_ C
1816, 17nfcsb 3119 . . . . 5  |-  F/_ y [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C
1915, 18nfop 3821 . . . 4  |-  F/_ y <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C >.
2019nfsn 3679 . . 3  |-  F/_ y { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >. }
21 nfcv 2336 . . 3  |-  F/_ w { <. <. x ,  y
>. ,  C >. }
22 id 19 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  w  =  <. x ,  y >. )
23 csbopeq1a 6243 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C  =  C )
2422, 23opeq12d 3813 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >.  =  <. <.
x ,  y >. ,  C >. )
2524sneqd 3632 . . 3  |-  ( w  =  <. x ,  y
>.  ->  { <. w ,  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }  =  { <. <. x ,  y
>. ,  C >. } )
2614, 20, 21, 25iunxpf 4811 . 2  |-  U_ w  e.  ( A  X.  B
) { <. w ,  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
271, 10, 263eqtri 2218 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   [_csb 3081   {csn 3619   <.cop 3622   U_ciun 3913    |-> cmpt 4091    X. cxp 4658   ` cfv 5255    e. cmpo 5921   1stc1st 6193   2ndc2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator