ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpo Unicode version

Theorem dfmpo 6202
Description: Alternate definition for the maps-to notation df-mpo 5858 (although it requires that  C be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpo.1  |-  C  e. 
_V
Assertion
Ref Expression
dfmpo  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    C( x, y)

Proof of Theorem dfmpo
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mpompts 6177 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( w  e.  ( A  X.  B
)  |->  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C )
2 vex 2733 . . . . 5  |-  w  e. 
_V
3 1stexg 6146 . . . . 5  |-  ( w  e.  _V  ->  ( 1st `  w )  e. 
_V )
42, 3ax-mp 5 . . . 4  |-  ( 1st `  w )  e.  _V
5 2ndexg 6147 . . . . . 6  |-  ( w  e.  _V  ->  ( 2nd `  w )  e. 
_V )
62, 5ax-mp 5 . . . . 5  |-  ( 2nd `  w )  e.  _V
7 dfmpo.1 . . . . 5  |-  C  e. 
_V
86, 7csbexa 4118 . . . 4  |-  [_ ( 2nd `  w )  / 
y ]_ C  e.  _V
94, 8csbexa 4118 . . 3  |-  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C  e.  _V
109dfmpt 5673 . 2  |-  ( w  e.  ( A  X.  B )  |->  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C )  =  U_ w  e.  ( A  X.  B ) { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }
11 nfcv 2312 . . . . 5  |-  F/_ x w
12 nfcsb1v 3082 . . . . 5  |-  F/_ x [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C
1311, 12nfop 3781 . . . 4  |-  F/_ x <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C >.
1413nfsn 3643 . . 3  |-  F/_ x { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >. }
15 nfcv 2312 . . . . 5  |-  F/_ y
w
16 nfcv 2312 . . . . . 6  |-  F/_ y
( 1st `  w
)
17 nfcsb1v 3082 . . . . . 6  |-  F/_ y [_ ( 2nd `  w
)  /  y ]_ C
1816, 17nfcsb 3086 . . . . 5  |-  F/_ y [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C
1915, 18nfop 3781 . . . 4  |-  F/_ y <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  /  y ]_ C >.
2019nfsn 3643 . . 3  |-  F/_ y { <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >. }
21 nfcv 2312 . . 3  |-  F/_ w { <. <. x ,  y
>. ,  C >. }
22 id 19 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  w  =  <. x ,  y >. )
23 csbopeq1a 6167 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C  =  C )
2422, 23opeq12d 3773 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  <. w ,  [_ ( 1st `  w )  /  x ]_ [_ ( 2nd `  w )  / 
y ]_ C >.  =  <. <.
x ,  y >. ,  C >. )
2524sneqd 3596 . . 3  |-  ( w  =  <. x ,  y
>.  ->  { <. w ,  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }  =  { <. <. x ,  y
>. ,  C >. } )
2614, 20, 21, 25iunxpf 4759 . 2  |-  U_ w  e.  ( A  X.  B
) { <. w ,  [_ ( 1st `  w
)  /  x ]_ [_ ( 2nd `  w
)  /  y ]_ C >. }  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
271, 10, 263eqtri 2195 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  C >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730   [_csb 3049   {csn 3583   <.cop 3586   U_ciun 3873    |-> cmpt 4050    X. cxp 4609   ` cfv 5198    e. cmpo 5855   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator