Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfmpo | Unicode version |
Description: Alternate definition for the maps-to notation df-mpo 5847 (although it requires that be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpo.1 |
Ref | Expression |
---|---|
dfmpo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpompts 6166 | . 2 | |
2 | vex 2729 | . . . . 5 | |
3 | 1stexg 6135 | . . . . 5 | |
4 | 2, 3 | ax-mp 5 | . . . 4 |
5 | 2ndexg 6136 | . . . . . 6 | |
6 | 2, 5 | ax-mp 5 | . . . . 5 |
7 | dfmpo.1 | . . . . 5 | |
8 | 6, 7 | csbexa 4111 | . . . 4 |
9 | 4, 8 | csbexa 4111 | . . 3 |
10 | 9 | dfmpt 5662 | . 2 |
11 | nfcv 2308 | . . . . 5 | |
12 | nfcsb1v 3078 | . . . . 5 | |
13 | 11, 12 | nfop 3774 | . . . 4 |
14 | 13 | nfsn 3636 | . . 3 |
15 | nfcv 2308 | . . . . 5 | |
16 | nfcv 2308 | . . . . . 6 | |
17 | nfcsb1v 3078 | . . . . . 6 | |
18 | 16, 17 | nfcsb 3082 | . . . . 5 |
19 | 15, 18 | nfop 3774 | . . . 4 |
20 | 19 | nfsn 3636 | . . 3 |
21 | nfcv 2308 | . . 3 | |
22 | id 19 | . . . . 5 | |
23 | csbopeq1a 6156 | . . . . 5 | |
24 | 22, 23 | opeq12d 3766 | . . . 4 |
25 | 24 | sneqd 3589 | . . 3 |
26 | 14, 20, 21, 25 | iunxpf 4752 | . 2 |
27 | 1, 10, 26 | 3eqtri 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 cvv 2726 csb 3045 csn 3576 cop 3579 ciun 3866 cmpt 4043 cxp 4602 cfv 5188 cmpo 5844 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |