Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfmpo | Unicode version |
Description: Alternate definition for the maps-to notation df-mpo 5830 (although it requires that be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpo.1 |
Ref | Expression |
---|---|
dfmpo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpompts 6147 | . 2 | |
2 | vex 2715 | . . . . 5 | |
3 | 1stexg 6116 | . . . . 5 | |
4 | 2, 3 | ax-mp 5 | . . . 4 |
5 | 2ndexg 6117 | . . . . . 6 | |
6 | 2, 5 | ax-mp 5 | . . . . 5 |
7 | dfmpo.1 | . . . . 5 | |
8 | 6, 7 | csbexa 4094 | . . . 4 |
9 | 4, 8 | csbexa 4094 | . . 3 |
10 | 9 | dfmpt 5645 | . 2 |
11 | nfcv 2299 | . . . . 5 | |
12 | nfcsb1v 3064 | . . . . 5 | |
13 | 11, 12 | nfop 3758 | . . . 4 |
14 | 13 | nfsn 3620 | . . 3 |
15 | nfcv 2299 | . . . . 5 | |
16 | nfcv 2299 | . . . . . 6 | |
17 | nfcsb1v 3064 | . . . . . 6 | |
18 | 16, 17 | nfcsb 3068 | . . . . 5 |
19 | 15, 18 | nfop 3758 | . . . 4 |
20 | 19 | nfsn 3620 | . . 3 |
21 | nfcv 2299 | . . 3 | |
22 | id 19 | . . . . 5 | |
23 | csbopeq1a 6137 | . . . . 5 | |
24 | 22, 23 | opeq12d 3750 | . . . 4 |
25 | 24 | sneqd 3573 | . . 3 |
26 | 14, 20, 21, 25 | iunxpf 4735 | . 2 |
27 | 1, 10, 26 | 3eqtri 2182 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 wcel 2128 cvv 2712 csb 3031 csn 3560 cop 3563 ciun 3850 cmpt 4026 cxp 4585 cfv 5171 cmpo 5827 c1st 6087 c2nd 6088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 ax-un 4394 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-id 4254 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |