ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexa GIF version

Theorem csbexa 4064
Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
csbexa.1 𝐴 ∈ V
csbexa.2 𝐵 ∈ V
Assertion
Ref Expression
csbexa 𝐴 / 𝑥𝐵 ∈ V

Proof of Theorem csbexa
StepHypRef Expression
1 csbexa.1 . . 3 𝐴 ∈ V
2 csbexga 4063 . . 3 ((𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ V) → 𝐴 / 𝑥𝐵 ∈ V)
31, 2mpan 421 . 2 (∀𝑥 𝐵 ∈ V → 𝐴 / 𝑥𝐵 ∈ V)
4 csbexa.2 . 2 𝐵 ∈ V
53, 4mpg 1428 1 𝐴 / 𝑥𝐵 ∈ V
Colors of variables: wff set class
Syntax hints:  wal 1330  wcel 1481  Vcvv 2689  csb 3006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-sbc 2913  df-csb 3007
This theorem is referenced by:  dfmpo  6127
  Copyright terms: Public domain W3C validator