ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbnestg Unicode version

Theorem csbnestg 3099
Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
Assertion
Ref Expression
csbnestg  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x, y)    B( x, y)    C( y)    V( x, y)

Proof of Theorem csbnestg
StepHypRef Expression
1 nfcv 2308 . . 3  |-  F/_ x C
21ax-gen 1437 . 2  |-  A. y F/_ x C
3 csbnestgf 3097 . 2  |-  ( ( A  e.  V  /\  A. y F/_ x C )  ->  [_ A  /  x ]_ [_ B  / 
y ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ C
)
42, 3mpan2 422 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341    = wceq 1343    e. wcel 2136   F/_wnfc 2295   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  csbco3g  3103
  Copyright terms: Public domain W3C validator