ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnestg Unicode version

Theorem sbcnestg 3138
Description: Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
sbcnestg  |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ph( y)    A( x, y)    B( x, y)    V( x, y)

Proof of Theorem sbcnestg
StepHypRef Expression
1 nfv 1542 . . 3  |-  F/ x ph
21ax-gen 1463 . 2  |-  A. y F/ x ph
3 sbcnestgf 3136 . 2  |-  ( ( A  e.  V  /\  A. y F/ x ph )  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  / 
y ]. ph ) )
42, 3mpan2 425 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362   F/wnf 1474    e. wcel 2167   [.wsbc 2989   [_csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  sbcco3g  3142
  Copyright terms: Public domain W3C validator