ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbnest1g Unicode version

Theorem csbnest1g 3104
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
csbnest1g  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  x ]_ C  = 
[_ [_ A  /  x ]_ B  /  x ]_ C )

Proof of Theorem csbnest1g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3082 . . . 4  |-  F/_ x [_ y  /  x ]_ C
21ax-gen 1442 . . 3  |-  A. y F/_ x [_ y  /  x ]_ C
3 csbnestgf 3101 . . 3  |-  ( ( A  e.  V  /\  A. y F/_ x [_ y  /  x ]_ C
)  ->  [_ A  /  x ]_ [_ B  / 
y ]_ [_ y  /  x ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ [_ y  /  x ]_ C )
42, 3mpan2 423 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  y ]_ [_ y  /  x ]_ C  = 
[_ [_ A  /  x ]_ B  /  y ]_ [_ y  /  x ]_ C )
5 csbco 3059 . . 3  |-  [_ B  /  y ]_ [_ y  /  x ]_ C  = 
[_ B  /  x ]_ C
65csbeq2i 3076 . 2  |-  [_ A  /  x ]_ [_ B  /  y ]_ [_ y  /  x ]_ C  = 
[_ A  /  x ]_ [_ B  /  x ]_ C
7 csbco 3059 . 2  |-  [_ [_ A  /  x ]_ B  / 
y ]_ [_ y  /  x ]_ C  =  [_ [_ A  /  x ]_ B  /  x ]_ C
84, 6, 73eqtr3g 2226 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  x ]_ C  = 
[_ [_ A  /  x ]_ B  /  x ]_ C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346    = wceq 1348    e. wcel 2141   F/_wnfc 2299   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  csbidmg  3105
  Copyright terms: Public domain W3C validator