ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbnest1g Unicode version

Theorem csbnest1g 3153
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
csbnest1g  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  x ]_ C  = 
[_ [_ A  /  x ]_ B  /  x ]_ C )

Proof of Theorem csbnest1g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3130 . . . 4  |-  F/_ x [_ y  /  x ]_ C
21ax-gen 1473 . . 3  |-  A. y F/_ x [_ y  /  x ]_ C
3 csbnestgf 3150 . . 3  |-  ( ( A  e.  V  /\  A. y F/_ x [_ y  /  x ]_ C
)  ->  [_ A  /  x ]_ [_ B  / 
y ]_ [_ y  /  x ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ [_ y  /  x ]_ C )
42, 3mpan2 425 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  y ]_ [_ y  /  x ]_ C  = 
[_ [_ A  /  x ]_ B  /  y ]_ [_ y  /  x ]_ C )
5 csbco 3107 . . 3  |-  [_ B  /  y ]_ [_ y  /  x ]_ C  = 
[_ B  /  x ]_ C
65csbeq2i 3124 . 2  |-  [_ A  /  x ]_ [_ B  /  y ]_ [_ y  /  x ]_ C  = 
[_ A  /  x ]_ [_ B  /  x ]_ C
7 csbco 3107 . 2  |-  [_ [_ A  /  x ]_ B  / 
y ]_ [_ y  /  x ]_ C  =  [_ [_ A  /  x ]_ B  /  x ]_ C
84, 6, 73eqtr3g 2262 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  x ]_ C  = 
[_ [_ A  /  x ]_ B  /  x ]_ C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    = wceq 1373    e. wcel 2177   F/_wnfc 2336   [_csb 3097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3003  df-csb 3098
This theorem is referenced by:  csbidmg  3154
  Copyright terms: Public domain W3C validator