Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbnest1g | Unicode version |
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
csbnest1g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 3064 | . . . 4 | |
2 | 1 | ax-gen 1429 | . . 3 |
3 | csbnestgf 3083 | . . 3 | |
4 | 2, 3 | mpan2 422 | . 2 |
5 | csbco 3041 | . . 3 | |
6 | 5 | csbeq2i 3058 | . 2 |
7 | csbco 3041 | . 2 | |
8 | 4, 6, 7 | 3eqtr3g 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1333 wceq 1335 wcel 2128 wnfc 2286 csb 3031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-sbc 2938 df-csb 3032 |
This theorem is referenced by: csbidmg 3087 |
Copyright terms: Public domain | W3C validator |