ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apirr Unicode version

Theorem apirr 8624
Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apirr  |-  ( A  e.  CC  ->  -.  A #  A )

Proof of Theorem apirr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8015 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 reapirr 8596 . . . . . . . . . 10  |-  ( x  e.  RR  ->  -.  x #  x )
3 apreap 8606 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  x  e.  RR )  ->  ( x #  x  <->  x #  x )
)
43anidms 397 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x #  x  <->  x #  x )
)
52, 4mtbird 674 . . . . . . . . 9  |-  ( x  e.  RR  ->  -.  x #  x )
6 reapirr 8596 . . . . . . . . . 10  |-  ( y  e.  RR  ->  -.  y #  y )
7 apreap 8606 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  y  e.  RR )  ->  ( y #  y  <->  y #  y )
)
87anidms 397 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y #  y  <->  y #  y )
)
96, 8mtbird 674 . . . . . . . . 9  |-  ( y  e.  RR  ->  -.  y #  y )
105, 9anim12i 338 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( -.  x #  x  /\  -.  y #  y ) )
11 ioran 753 . . . . . . . 8  |-  ( -.  ( x #  x  \/  y #  y )  <->  ( -.  x #  x  /\  -.  y #  y ) )
1210, 11sylibr 134 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  -.  ( x #  x  \/  y #  y )
)
13 apreim 8622 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) )  <->  ( x #  x  \/  y #  y
) ) )
1413anidms 397 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) )  <->  ( x #  x  \/  y #  y
) ) )
1512, 14mtbird 674 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  -.  ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) ) )
1615ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  ->  -.  ( x  +  (
_i  x.  y )
) #  ( x  +  ( _i  x.  y
) ) )
17 id 19 . . . . . . . 8  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
1817, 17breq12d 4042 . . . . . . 7  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  A  <->  ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) ) ) )
1918notbid 668 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( -.  A #  A  <->  -.  (
x  +  ( _i  x.  y ) ) #  ( x  +  ( _i  x.  y ) ) ) )
2019adantl 277 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  ->  ( -.  A #  A  <->  -.  (
x  +  ( _i  x.  y ) ) #  ( x  +  ( _i  x.  y ) ) ) )
2116, 20mpbird 167 . . . 4  |-  ( ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  ->  -.  A #  A )
2221ex 115 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( A  =  ( x  +  ( _i  x.  y
) )  ->  -.  A #  A ) )
2322rexlimdvva 2619 . 2  |-  ( A  e.  CC  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  -.  A #  A ) )
241, 23mpd 13 1  |-  ( A  e.  CC  ->  -.  A #  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871   _ici 7874    + caddc 7875    x. cmul 7877   # creap 8593   # cap 8600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601
This theorem is referenced by:  mulap0r  8634  aptap  8669  eirr  11922  dcapnconst  15551
  Copyright terms: Public domain W3C validator