ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apirr Unicode version

Theorem apirr 8748
Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apirr  |-  ( A  e.  CC  ->  -.  A #  A )

Proof of Theorem apirr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8138 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 reapirr 8720 . . . . . . . . . 10  |-  ( x  e.  RR  ->  -.  x #  x )
3 apreap 8730 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  x  e.  RR )  ->  ( x #  x  <->  x #  x )
)
43anidms 397 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x #  x  <->  x #  x )
)
52, 4mtbird 677 . . . . . . . . 9  |-  ( x  e.  RR  ->  -.  x #  x )
6 reapirr 8720 . . . . . . . . . 10  |-  ( y  e.  RR  ->  -.  y #  y )
7 apreap 8730 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  y  e.  RR )  ->  ( y #  y  <->  y #  y )
)
87anidms 397 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y #  y  <->  y #  y )
)
96, 8mtbird 677 . . . . . . . . 9  |-  ( y  e.  RR  ->  -.  y #  y )
105, 9anim12i 338 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( -.  x #  x  /\  -.  y #  y ) )
11 ioran 757 . . . . . . . 8  |-  ( -.  ( x #  x  \/  y #  y )  <->  ( -.  x #  x  /\  -.  y #  y ) )
1210, 11sylibr 134 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  -.  ( x #  x  \/  y #  y )
)
13 apreim 8746 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) )  <->  ( x #  x  \/  y #  y
) ) )
1413anidms 397 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) )  <->  ( x #  x  \/  y #  y
) ) )
1512, 14mtbird 677 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  -.  ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) ) )
1615ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  ->  -.  ( x  +  (
_i  x.  y )
) #  ( x  +  ( _i  x.  y
) ) )
17 id 19 . . . . . . . 8  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
1817, 17breq12d 4095 . . . . . . 7  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  A  <->  ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) ) ) )
1918notbid 671 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( -.  A #  A  <->  -.  (
x  +  ( _i  x.  y ) ) #  ( x  +  ( _i  x.  y ) ) ) )
2019adantl 277 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  ->  ( -.  A #  A  <->  -.  (
x  +  ( _i  x.  y ) ) #  ( x  +  ( _i  x.  y ) ) ) )
2116, 20mpbird 167 . . . 4  |-  ( ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  ->  -.  A #  A )
2221ex 115 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( A  =  ( x  +  ( _i  x.  y
) )  ->  -.  A #  A ) )
2322rexlimdvva 2656 . 2  |-  ( A  e.  CC  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  -.  A #  A ) )
241, 23mpd 13 1  |-  ( A  e.  CC  ->  -.  A #  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   CCcc 7993   RRcr 7994   _ici 7997    + caddc 7998    x. cmul 8000   # creap 8717   # cap 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725
This theorem is referenced by:  mulap0r  8758  aptap  8793  eirr  12285  dcapnconst  16388
  Copyright terms: Public domain W3C validator