ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apirr Unicode version

Theorem apirr 8390
Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apirr  |-  ( A  e.  CC  ->  -.  A #  A )

Proof of Theorem apirr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7785 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 reapirr 8362 . . . . . . . . . 10  |-  ( x  e.  RR  ->  -.  x #  x )
3 apreap 8372 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  x  e.  RR )  ->  ( x #  x  <->  x #  x )
)
43anidms 395 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x #  x  <->  x #  x )
)
52, 4mtbird 663 . . . . . . . . 9  |-  ( x  e.  RR  ->  -.  x #  x )
6 reapirr 8362 . . . . . . . . . 10  |-  ( y  e.  RR  ->  -.  y #  y )
7 apreap 8372 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  y  e.  RR )  ->  ( y #  y  <->  y #  y )
)
87anidms 395 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y #  y  <->  y #  y )
)
96, 8mtbird 663 . . . . . . . . 9  |-  ( y  e.  RR  ->  -.  y #  y )
105, 9anim12i 336 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( -.  x #  x  /\  -.  y #  y ) )
11 ioran 742 . . . . . . . 8  |-  ( -.  ( x #  x  \/  y #  y )  <->  ( -.  x #  x  /\  -.  y #  y ) )
1210, 11sylibr 133 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  -.  ( x #  x  \/  y #  y )
)
13 apreim 8388 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) )  <->  ( x #  x  \/  y #  y
) ) )
1413anidms 395 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) )  <->  ( x #  x  \/  y #  y
) ) )
1512, 14mtbird 663 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  -.  ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) ) )
1615ad2antlr 481 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  ->  -.  ( x  +  (
_i  x.  y )
) #  ( x  +  ( _i  x.  y
) ) )
17 id 19 . . . . . . . 8  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
1817, 17breq12d 3949 . . . . . . 7  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  A  <->  ( x  +  ( _i  x.  y
) ) #  ( x  +  ( _i  x.  y ) ) ) )
1918notbid 657 . . . . . 6  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( -.  A #  A  <->  -.  (
x  +  ( _i  x.  y ) ) #  ( x  +  ( _i  x.  y ) ) ) )
2019adantl 275 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  ->  ( -.  A #  A  <->  -.  (
x  +  ( _i  x.  y ) ) #  ( x  +  ( _i  x.  y ) ) ) )
2116, 20mpbird 166 . . . 4  |-  ( ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  ->  -.  A #  A )
2221ex 114 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( A  =  ( x  +  ( _i  x.  y
) )  ->  -.  A #  A ) )
2322rexlimdvva 2560 . 2  |-  ( A  e.  CC  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  -.  A #  A ) )
241, 23mpd 13 1  |-  ( A  e.  CC  ->  -.  A #  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481   E.wrex 2418   class class class wbr 3936  (class class class)co 5781   CCcc 7641   RRcr 7642   _ici 7645    + caddc 7646    x. cmul 7648   # creap 8359   # cap 8366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pnf 7825  df-mnf 7826  df-ltxr 7828  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367
This theorem is referenced by:  mulap0r  8400  eirr  11519  dcapncf  13421
  Copyright terms: Public domain W3C validator