Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > apirr | Unicode version |
Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
Ref | Expression |
---|---|
apirr | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7928 | . 2 | |
2 | reapirr 8508 | . . . . . . . . . 10 #ℝ | |
3 | apreap 8518 | . . . . . . . . . . 11 # #ℝ | |
4 | 3 | anidms 397 | . . . . . . . . . 10 # #ℝ |
5 | 2, 4 | mtbird 673 | . . . . . . . . 9 # |
6 | reapirr 8508 | . . . . . . . . . 10 #ℝ | |
7 | apreap 8518 | . . . . . . . . . . 11 # #ℝ | |
8 | 7 | anidms 397 | . . . . . . . . . 10 # #ℝ |
9 | 6, 8 | mtbird 673 | . . . . . . . . 9 # |
10 | 5, 9 | anim12i 338 | . . . . . . . 8 # # |
11 | ioran 752 | . . . . . . . 8 # # # # | |
12 | 10, 11 | sylibr 134 | . . . . . . 7 # # |
13 | apreim 8534 | . . . . . . . 8 # # # | |
14 | 13 | anidms 397 | . . . . . . 7 # # # |
15 | 12, 14 | mtbird 673 | . . . . . 6 # |
16 | 15 | ad2antlr 489 | . . . . 5 # |
17 | id 19 | . . . . . . . 8 | |
18 | 17, 17 | breq12d 4011 | . . . . . . 7 # # |
19 | 18 | notbid 667 | . . . . . 6 # # |
20 | 19 | adantl 277 | . . . . 5 # # |
21 | 16, 20 | mpbird 167 | . . . 4 # |
22 | 21 | ex 115 | . . 3 # |
23 | 22 | rexlimdvva 2600 | . 2 # |
24 | 1, 23 | mpd 13 | 1 # |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 wceq 1353 wcel 2146 wrex 2454 class class class wbr 3998 (class class class)co 5865 cc 7784 cr 7785 ci 7788 caddc 7789 cmul 7791 #ℝ creap 8505 # cap 8512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 |
This theorem is referenced by: mulap0r 8546 eirr 11754 dcapnconst 14369 |
Copyright terms: Public domain | W3C validator |