ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apcotr Unicode version

Theorem apcotr 8554
Description: Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apcotr  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) )

Proof of Theorem apcotr
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7944 . . 3  |-  ( C  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  C  =  ( u  +  ( _i  x.  v ) ) )
213ad2ant3 1020 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. u  e.  RR  E. v  e.  RR  C  =  ( u  +  ( _i  x.  v ) ) )
3 cnre 7944 . . . . . . 7  |-  ( B  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
433ad2ant2 1019 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
54ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
6 cnre 7944 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
763ad2ant1 1018 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
87adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
98ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
10 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
11 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  B  =  ( z  +  ( _i  x.  w
) ) )
1210, 11breq12d 4013 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) ) ) )
13 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  x  e.  RR )
14 simplrr 536 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  y  e.  RR )
15 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  z  e.  RR )
1615ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  z  e.  RR )
17 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  w  e.  RR )
1817ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  w  e.  RR )
19 apreim 8550 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) )  <->  ( x #  z  \/  y #  w
) ) )
2013, 14, 16, 18, 19syl22anc 1239 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( x #  z  \/  y #  w
) ) )
2112, 20bitrd 188 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  ( x #  z  \/  y #  w ) ) )
22 simprl 529 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  u  e.  RR )
2322ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  u  e.  RR )
2423ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  u  e.  RR )
25 reapcotr 8545 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  z  e.  RR  /\  u  e.  RR )  ->  (
x #  z  ->  (
x #  u  \/  z #  u ) ) )
2613, 16, 24, 25syl3anc 1238 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x #  z  ->  (
x #  u  \/  z #  u ) ) )
27 simprr 531 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  v  e.  RR )
2827ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  v  e.  RR )
2928ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  v  e.  RR )
30 reapcotr 8545 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR  /\  w  e.  RR  /\  v  e.  RR )  ->  (
y #  w  ->  (
y #  v  \/  w #  v ) ) )
3114, 18, 29, 30syl3anc 1238 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y #  w  ->  (
y #  v  \/  w #  v ) ) )
3226, 31orim12d 786 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x #  z  \/  y #  w )  -> 
( ( x #  u  \/  z #  u )  \/  ( y #  v  \/  w #  v ) ) ) )
3321, 32sylbid 150 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  ->  ( ( x #  u  \/  z #  u )  \/  (
y #  v  \/  w #  v ) ) ) )
34 or4 771 . . . . . . . . . . . 12  |-  ( ( ( x #  u  \/  z #  u )  \/  ( y #  v  \/  w #  v ) )  <-> 
( ( x #  u  \/  y #  v )  \/  ( z #  u  \/  w #  v ) ) )
3533, 34syl6ib 161 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  ->  ( ( x #  u  \/  y #  v )  \/  (
z #  u  \/  w #  v ) ) ) )
36 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  C  =  ( u  +  (
_i  x.  v )
) )
3736ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  C  =  ( u  +  ( _i  x.  v
) ) )
3810, 37breq12d 4013 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  C  <->  ( x  +  ( _i  x.  y
) ) #  ( u  +  ( _i  x.  v ) ) ) )
39 apreim 8550 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( u  +  ( _i  x.  v ) )  <->  ( x #  u  \/  y #  v
) ) )
4013, 14, 24, 29, 39syl22anc 1239 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( u  +  ( _i  x.  v
) )  <->  ( x #  u  \/  y #  v
) ) )
4138, 40bitrd 188 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  C  <->  ( x #  u  \/  y #  v )
) )
4211, 37breq12d 4013 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( B #  C  <->  ( z  +  ( _i  x.  w
) ) #  ( u  +  ( _i  x.  v ) ) ) )
43 apreim 8550 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) ) #  ( u  +  ( _i  x.  v ) )  <->  ( z #  u  \/  w #  v
) ) )
4416, 18, 24, 29, 43syl22anc 1239 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( z  +  ( _i  x.  w ) ) #  ( u  +  ( _i  x.  v
) )  <->  ( z #  u  \/  w #  v
) ) )
4542, 44bitrd 188 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( B #  C  <->  ( z #  u  \/  w #  v ) ) )
4641, 45orbi12d 793 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( A #  C  \/  B #  C )  <->  ( (
x #  u  \/  y #  v )  \/  (
z #  u  \/  w #  v ) ) ) )
4735, 46sylibrd 169 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) )
4847ex 115 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  /\  C  =  ( u  +  ( _i  x.  v ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) ) )
4948rexlimdvva 2602 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) ) )
509, 49mpd 13 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) )
5150ex 115 . . . . . 6  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  ( B  =  ( z  +  ( _i  x.  w
) )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) ) )
5251rexlimdvva 2602 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  ->  ( E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) ) )
535, 52mpd 13 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  (
u  e.  RR  /\  v  e.  RR )
)  /\  C  =  ( u  +  (
_i  x.  v )
) )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) )
5453ex 115 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  RR  /\  v  e.  RR ) )  ->  ( C  =  ( u  +  ( _i  x.  v
) )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) ) )
5554rexlimdvva 2602 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. u  e.  RR  E. v  e.  RR  C  =  ( u  +  ( _i  x.  v
) )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) ) )
562, 55mpd 13 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A #  B  ->  ( A #  C  \/  B #  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4000  (class class class)co 5869   CCcc 7800   RRcr 7801   _ici 7804    + caddc 7805    x. cmul 7807   # cap 8528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-ltxr 7987  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529
This theorem is referenced by:  addext  8557  mulext  8561  mul0eqap  8616
  Copyright terms: Public domain W3C validator