| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > apsym | Unicode version | ||
| Description: Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) | 
| Ref | Expression | 
|---|---|
| apsym | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnre 8022 | 
. . 3
 | |
| 2 | 1 | adantl 277 | 
. 2
 | 
| 3 | cnre 8022 | 
. . . . . 6
 | |
| 4 | 3 | ad3antrrr 492 | 
. . . . 5
 | 
| 5 | simplrl 535 | 
. . . . . . . . . . . 12
 | |
| 6 | simplrl 535 | 
. . . . . . . . . . . . 13
 | |
| 7 | 6 | ad2antrr 488 | 
. . . . . . . . . . . 12
 | 
| 8 | reaplt 8615 | 
. . . . . . . . . . . 12
 | |
| 9 | 5, 7, 8 | syl2anc 411 | 
. . . . . . . . . . 11
 | 
| 10 | reaplt 8615 | 
. . . . . . . . . . . . 13
 | |
| 11 | 7, 5, 10 | syl2anc 411 | 
. . . . . . . . . . . 12
 | 
| 12 | orcom 729 | 
. . . . . . . . . . . 12
 | |
| 13 | 11, 12 | bitr4di 198 | 
. . . . . . . . . . 11
 | 
| 14 | 9, 13 | bitr4d 191 | 
. . . . . . . . . 10
 | 
| 15 | simplrr 536 | 
. . . . . . . . . . . 12
 | |
| 16 | simplrr 536 | 
. . . . . . . . . . . . 13
 | |
| 17 | 16 | ad2antrr 488 | 
. . . . . . . . . . . 12
 | 
| 18 | reaplt 8615 | 
. . . . . . . . . . . 12
 | |
| 19 | 15, 17, 18 | syl2anc 411 | 
. . . . . . . . . . 11
 | 
| 20 | reaplt 8615 | 
. . . . . . . . . . . . 13
 | |
| 21 | 17, 15, 20 | syl2anc 411 | 
. . . . . . . . . . . 12
 | 
| 22 | orcom 729 | 
. . . . . . . . . . . 12
 | |
| 23 | 21, 22 | bitr4di 198 | 
. . . . . . . . . . 11
 | 
| 24 | 19, 23 | bitr4d 191 | 
. . . . . . . . . 10
 | 
| 25 | 14, 24 | orbi12d 794 | 
. . . . . . . . 9
 | 
| 26 | apreim 8630 | 
. . . . . . . . . 10
 | |
| 27 | 5, 15, 7, 17, 26 | syl22anc 1250 | 
. . . . . . . . 9
 | 
| 28 | apreim 8630 | 
. . . . . . . . . 10
 | |
| 29 | 7, 17, 5, 15, 28 | syl22anc 1250 | 
. . . . . . . . 9
 | 
| 30 | 25, 27, 29 | 3bitr4d 220 | 
. . . . . . . 8
 | 
| 31 | simpr 110 | 
. . . . . . . . 9
 | |
| 32 | simpllr 534 | 
. . . . . . . . 9
 | |
| 33 | 31, 32 | breq12d 4046 | 
. . . . . . . 8
 | 
| 34 | 32, 31 | breq12d 4046 | 
. . . . . . . 8
 | 
| 35 | 30, 33, 34 | 3bitr4d 220 | 
. . . . . . 7
 | 
| 36 | 35 | ex 115 | 
. . . . . 6
 | 
| 37 | 36 | rexlimdvva 2622 | 
. . . . 5
 | 
| 38 | 4, 37 | mpd 13 | 
. . . 4
 | 
| 39 | 38 | ex 115 | 
. . 3
 | 
| 40 | 39 | rexlimdvva 2622 | 
. 2
 | 
| 41 | 2, 40 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 | 
| This theorem is referenced by: addext 8637 mulext 8641 ltapii 8662 ltapd 8665 aptap 8677 apdivmuld 8840 div2subap 8864 recgt0 8877 prodgt0 8879 irrmulap 9722 pwm1geoserap1 11673 absgtap 11675 geolim 11676 geolim2 11677 geo2sum2 11680 geoisum1c 11685 tanaddap 11904 egt2lt3 11945 sqrt2irraplemnn 12347 1sgm2ppw 15231 triap 15673 apdiff 15692 | 
| Copyright terms: Public domain | W3C validator |