ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apsym Unicode version

Theorem apsym 8661
Description: Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apsym  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  B #  A
) )

Proof of Theorem apsym
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8050 . . 3  |-  ( B  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
21adantl 277 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) ) )
3 cnre 8050 . . . . . 6  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
43ad3antrrr 492 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
5 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  x  e.  RR )
6 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  z  e.  RR )
76ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  z  e.  RR )
8 reaplt 8643 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x #  z  <->  ( x  <  z  \/  z  < 
x ) ) )
95, 7, 8syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x #  z  <->  ( x  <  z  \/  z  < 
x ) ) )
10 reaplt 8643 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  x  e.  RR )  ->  ( z #  x  <->  ( z  <  x  \/  x  < 
z ) ) )
117, 5, 10syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z #  x  <->  ( z  <  x  \/  x  < 
z ) ) )
12 orcom 729 . . . . . . . . . . . 12  |-  ( ( x  <  z  \/  z  <  x )  <-> 
( z  <  x  \/  x  <  z ) )
1311, 12bitr4di 198 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z #  x  <->  ( x  <  z  \/  z  < 
x ) ) )
149, 13bitr4d 191 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x #  z  <->  z #  x
) )
15 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  y  e.  RR )
16 simplrr 536 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  w  e.  RR )
1716ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  w  e.  RR )
18 reaplt 8643 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( y #  w  <->  ( y  <  w  \/  w  < 
y ) ) )
1915, 17, 18syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y #  w  <->  ( y  <  w  \/  w  < 
y ) ) )
20 reaplt 8643 . . . . . . . . . . . . 13  |-  ( ( w  e.  RR  /\  y  e.  RR )  ->  ( w #  y  <->  ( w  <  y  \/  y  < 
w ) ) )
2117, 15, 20syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w #  y  <->  ( w  <  y  \/  y  < 
w ) ) )
22 orcom 729 . . . . . . . . . . . 12  |-  ( ( y  <  w  \/  w  <  y )  <-> 
( w  <  y  \/  y  <  w ) )
2321, 22bitr4di 198 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w #  y  <->  ( y  <  w  \/  w  < 
y ) ) )
2419, 23bitr4d 191 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y #  w  <->  w #  y
) )
2514, 24orbi12d 794 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x #  z  \/  y #  w )  <->  ( z #  x  \/  w #  y
) ) )
26 apreim 8658 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) )  <->  ( x #  z  \/  y #  w
) ) )
275, 15, 7, 17, 26syl22anc 1250 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( x #  z  \/  y #  w
) ) )
28 apreim 8658 . . . . . . . . . 10  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) ) #  ( x  +  ( _i  x.  y ) )  <->  ( z #  x  \/  w #  y
) ) )
297, 17, 5, 15, 28syl22anc 1250 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( z  +  ( _i  x.  w ) ) #  ( x  +  ( _i  x.  y
) )  <->  ( z #  x  \/  w #  y
) ) )
3025, 27, 293bitr4d 220 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( z  +  ( _i  x.  w ) ) #  ( x  +  ( _i  x.  y ) ) ) )
31 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
32 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  B  =  ( z  +  ( _i  x.  w
) ) )
3331, 32breq12d 4056 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) ) ) )
3432, 31breq12d 4056 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( B #  A  <->  ( z  +  ( _i  x.  w
) ) #  ( x  +  ( _i  x.  y ) ) ) )
3530, 33, 343bitr4d 220 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  B #  A )
)
3635ex 115 . . . . . 6  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  B  <->  B #  A )
) )
3736rexlimdvva 2630 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  B  <->  B #  A )
) )
384, 37mpd 13 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A #  B  <->  B #  A )
)
3938ex 115 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( B  =  ( z  +  ( _i  x.  w ) )  ->  ( A #  B  <->  B #  A ) ) )
4039rexlimdvva 2630 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) )  ->  ( A #  B  <->  B #  A ) ) )
412, 40mpd 13 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  B #  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1372    e. wcel 2175   E.wrex 2484   class class class wbr 4043  (class class class)co 5934   CCcc 7905   RRcr 7906   _ici 7909    + caddc 7910    x. cmul 7912    < clt 8089   # cap 8636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637
This theorem is referenced by:  addext  8665  mulext  8669  ltapii  8690  ltapd  8693  aptap  8705  apdivmuld  8868  div2subap  8892  recgt0  8905  prodgt0  8907  irrmulap  9751  pwm1geoserap1  11738  absgtap  11740  geolim  11741  geolim2  11742  geo2sum2  11745  geoisum1c  11750  tanaddap  11969  egt2lt3  12010  sqrt2irraplemnn  12420  1sgm2ppw  15385  triap  15832  apdiff  15851
  Copyright terms: Public domain W3C validator