| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apsym | Unicode version | ||
| Description: Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
| Ref | Expression |
|---|---|
| apsym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8050 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | cnre 8050 |
. . . . . 6
| |
| 4 | 3 | ad3antrrr 492 |
. . . . 5
|
| 5 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 6 | simplrl 535 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 8 | reaplt 8643 |
. . . . . . . . . . . 12
| |
| 9 | 5, 7, 8 | syl2anc 411 |
. . . . . . . . . . 11
|
| 10 | reaplt 8643 |
. . . . . . . . . . . . 13
| |
| 11 | 7, 5, 10 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 12 | orcom 729 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | bitr4di 198 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | bitr4d 191 |
. . . . . . . . . 10
|
| 15 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 16 | simplrr 536 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 18 | reaplt 8643 |
. . . . . . . . . . . 12
| |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . . . . . . . . 11
|
| 20 | reaplt 8643 |
. . . . . . . . . . . . 13
| |
| 21 | 17, 15, 20 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 22 | orcom 729 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | bitr4di 198 |
. . . . . . . . . . 11
|
| 24 | 19, 23 | bitr4d 191 |
. . . . . . . . . 10
|
| 25 | 14, 24 | orbi12d 794 |
. . . . . . . . 9
|
| 26 | apreim 8658 |
. . . . . . . . . 10
| |
| 27 | 5, 15, 7, 17, 26 | syl22anc 1250 |
. . . . . . . . 9
|
| 28 | apreim 8658 |
. . . . . . . . . 10
| |
| 29 | 7, 17, 5, 15, 28 | syl22anc 1250 |
. . . . . . . . 9
|
| 30 | 25, 27, 29 | 3bitr4d 220 |
. . . . . . . 8
|
| 31 | simpr 110 |
. . . . . . . . 9
| |
| 32 | simpllr 534 |
. . . . . . . . 9
| |
| 33 | 31, 32 | breq12d 4056 |
. . . . . . . 8
|
| 34 | 32, 31 | breq12d 4056 |
. . . . . . . 8
|
| 35 | 30, 33, 34 | 3bitr4d 220 |
. . . . . . 7
|
| 36 | 35 | ex 115 |
. . . . . 6
|
| 37 | 36 | rexlimdvva 2630 |
. . . . 5
|
| 38 | 4, 37 | mpd 13 |
. . . 4
|
| 39 | 38 | ex 115 |
. . 3
|
| 40 | 39 | rexlimdvva 2630 |
. 2
|
| 41 | 2, 40 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 |
| This theorem is referenced by: addext 8665 mulext 8669 ltapii 8690 ltapd 8693 aptap 8705 apdivmuld 8868 div2subap 8892 recgt0 8905 prodgt0 8907 irrmulap 9751 pwm1geoserap1 11738 absgtap 11740 geolim 11741 geolim2 11742 geo2sum2 11745 geoisum1c 11750 tanaddap 11969 egt2lt3 12010 sqrt2irraplemnn 12420 1sgm2ppw 15385 triap 15832 apdiff 15851 |
| Copyright terms: Public domain | W3C validator |