| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apsym | Unicode version | ||
| Description: Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
| Ref | Expression |
|---|---|
| apsym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8039 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | cnre 8039 |
. . . . . 6
| |
| 4 | 3 | ad3antrrr 492 |
. . . . 5
|
| 5 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 6 | simplrl 535 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 8 | reaplt 8632 |
. . . . . . . . . . . 12
| |
| 9 | 5, 7, 8 | syl2anc 411 |
. . . . . . . . . . 11
|
| 10 | reaplt 8632 |
. . . . . . . . . . . . 13
| |
| 11 | 7, 5, 10 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 12 | orcom 729 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | bitr4di 198 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | bitr4d 191 |
. . . . . . . . . 10
|
| 15 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 16 | simplrr 536 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 18 | reaplt 8632 |
. . . . . . . . . . . 12
| |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . . . . . . . . 11
|
| 20 | reaplt 8632 |
. . . . . . . . . . . . 13
| |
| 21 | 17, 15, 20 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 22 | orcom 729 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | bitr4di 198 |
. . . . . . . . . . 11
|
| 24 | 19, 23 | bitr4d 191 |
. . . . . . . . . 10
|
| 25 | 14, 24 | orbi12d 794 |
. . . . . . . . 9
|
| 26 | apreim 8647 |
. . . . . . . . . 10
| |
| 27 | 5, 15, 7, 17, 26 | syl22anc 1250 |
. . . . . . . . 9
|
| 28 | apreim 8647 |
. . . . . . . . . 10
| |
| 29 | 7, 17, 5, 15, 28 | syl22anc 1250 |
. . . . . . . . 9
|
| 30 | 25, 27, 29 | 3bitr4d 220 |
. . . . . . . 8
|
| 31 | simpr 110 |
. . . . . . . . 9
| |
| 32 | simpllr 534 |
. . . . . . . . 9
| |
| 33 | 31, 32 | breq12d 4047 |
. . . . . . . 8
|
| 34 | 32, 31 | breq12d 4047 |
. . . . . . . 8
|
| 35 | 30, 33, 34 | 3bitr4d 220 |
. . . . . . 7
|
| 36 | 35 | ex 115 |
. . . . . 6
|
| 37 | 36 | rexlimdvva 2622 |
. . . . 5
|
| 38 | 4, 37 | mpd 13 |
. . . 4
|
| 39 | 38 | ex 115 |
. . 3
|
| 40 | 39 | rexlimdvva 2622 |
. 2
|
| 41 | 2, 40 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 |
| This theorem is referenced by: addext 8654 mulext 8658 ltapii 8679 ltapd 8682 aptap 8694 apdivmuld 8857 div2subap 8881 recgt0 8894 prodgt0 8896 irrmulap 9739 pwm1geoserap1 11690 absgtap 11692 geolim 11693 geolim2 11694 geo2sum2 11697 geoisum1c 11702 tanaddap 11921 egt2lt3 11962 sqrt2irraplemnn 12372 1sgm2ppw 15315 triap 15760 apdiff 15779 |
| Copyright terms: Public domain | W3C validator |