ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreim Unicode version

Theorem apreim 8622
Description: Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.)
Assertion
Ref Expression
apreim  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( C  +  ( _i  x.  D ) )  <->  ( A #  C  \/  B #  D
) ) )

Proof of Theorem apreim
Dummy variables  r  s  t  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
21recnd 8048 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  CC )
3 ax-icn 7967 . . . . . . 7  |-  _i  e.  CC
43a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  _i  e.  CC )
5 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR )
65recnd 8048 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  CC )
74, 6mulcld 8040 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  B
)  e.  CC )
82, 7addcld 8039 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  +  ( _i  x.  B ) )  e.  CC )
9 simprl 529 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR )
109recnd 8048 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  CC )
11 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
1211recnd 8048 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  CC )
134, 12mulcld 8040 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  D
)  e.  CC )
1410, 13addcld 8039 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  ( _i  x.  D ) )  e.  CC )
15 eqeq1 2200 . . . . . . . . 9  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  (
x  =  ( r  +  ( _i  x.  s ) )  <->  ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) ) ) )
1615anbi1d 465 . . . . . . . 8  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) ) ) )
1716anbi1d 465 . . . . . . 7  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  (
( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
18172rexbidv 2519 . . . . . 6  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  ( E. t  e.  RR  E. u  e.  RR  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
19182rexbidv 2519 . . . . 5  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
20 eqeq1 2200 . . . . . . . . 9  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  (
y  =  ( t  +  ( _i  x.  u ) )  <->  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) ) )
2120anbi2d 464 . . . . . . . 8  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) ) ) )
2221anbi1d 465 . . . . . . 7  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
23222rexbidv 2519 . . . . . 6  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  ( E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
24232rexbidv 2519 . . . . 5  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
25 df-ap 8601 . . . . 5  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
2619, 24, 25brabg 4299 . . . 4  |-  ( ( ( A  +  ( _i  x.  B ) )  e.  CC  /\  ( C  +  (
_i  x.  D )
)  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D ) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
278, 14, 26syl2anc 411 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( C  +  ( _i  x.  D ) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
28 simprr 531 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( r #  t  \/  s #  u ) )
291ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  A  e.  RR )
309ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  C  e.  RR )
31 apreap 8606 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A #  C  <->  A #  C )
)
3229, 30, 31syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A #  C  <->  A #  C ) )
335ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  B  e.  RR )
3411ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  D  e.  RR )
35 apreap 8606 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  D  e.  RR )  ->  ( B #  D  <->  B #  D )
)
3633, 34, 35syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( B #  D  <->  B #  D ) )
3732, 36orbi12d 794 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( A #  C  \/  B #  D
)  <->  ( A #  C  \/  B #  D ) ) )
38 simprll 537 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) ) )
39 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( r  e.  RR  /\  s  e.  RR ) )
40 cru 8621 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( r  e.  RR  /\  s  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  <-> 
( A  =  r  /\  B  =  s ) ) )
4129, 33, 39, 40syl21anc 1248 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  <->  ( A  =  r  /\  B  =  s ) ) )
4238, 41mpbid 147 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A  =  r  /\  B  =  s ) )
4342simpld 112 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  A  =  r )
44 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )
45 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( t  e.  RR  /\  u  e.  RR ) )
46 cru 8621 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) )  <-> 
( C  =  t  /\  D  =  u ) ) )
4730, 34, 45, 46syl21anc 1248 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) )  <->  ( C  =  t  /\  D  =  u ) ) )
4844, 47mpbid 147 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( C  =  t  /\  D  =  u ) )
4948simpld 112 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  C  =  t )
5043, 49breq12d 4042 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A #  C  <->  r #  t )
)
5142simprd 114 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  B  =  s )
5248simprd 114 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  D  =  u )
5351, 52breq12d 4042 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( B #  D  <->  s #  u )
)
5450, 53orbi12d 794 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( A #  C  \/  B #  D )  <->  ( r #  t  \/  s #  u ) ) )
5537, 54bitrd 188 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( A #  C  \/  B #  D
)  <->  ( r #  t  \/  s #  u ) ) )
5628, 55mpbird 167 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A #  C  \/  B #  D )
)
5756ex 115 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  ->  ( A #  C  \/  B #  D
) ) )
5857rexlimdvva 2619 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  ->  ( A #  C  \/  B #  D
) ) )
5958rexlimdvva 2619 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  ->  ( A #  C  \/  B #  D
) ) )
6027, 59sylbid 150 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( C  +  ( _i  x.  D ) )  -> 
( A #  C  \/  B #  D ) ) )
6131ad2ant2r 509 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A #  C  <->  A #  C )
)
6235ad2ant2l 508 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B #  D  <->  B #  D )
)
6361, 62orbi12d 794 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A #  C  \/  B #  D )  <->  ( A #  C  \/  B #  D ) ) )
6463pm5.32i 454 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D ) )  <->  ( (
( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D
) ) )
65 eqid 2193 . . . . . . . . . . . 12  |-  ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )
66 eqid 2193 . . . . . . . . . . . 12  |-  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) )
6765, 66pm3.2i 272 . . . . . . . . . . 11  |-  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) )
6867biantrur 303 . . . . . . . . . 10  |-  ( ( A #  C  \/  B #  D )  <-> 
( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) )  /\  ( A #  C  \/  B #  D )
) )
69 oveq1 5925 . . . . . . . . . . . . . 14  |-  ( t  =  C  ->  (
t  +  ( _i  x.  u ) )  =  ( C  +  ( _i  x.  u
) ) )
7069eqeq2d 2205 . . . . . . . . . . . . 13  |-  ( t  =  C  ->  (
( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) )  <->  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) ) ) )
7170anbi2d 464 . . . . . . . . . . . 12  |-  ( t  =  C  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) ) ) ) )
72 breq2 4033 . . . . . . . . . . . . 13  |-  ( t  =  C  ->  ( A #  t 
<->  A #  C ) )
7372orbi1d 792 . . . . . . . . . . . 12  |-  ( t  =  C  ->  (
( A #  t  \/  B #  u
)  <->  ( A #  C  \/  B #  u ) ) )
7471, 73anbi12d 473 . . . . . . . . . . 11  |-  ( t  =  C  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
)  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) ) )  /\  ( A #  C  \/  B #  u )
) ) )
75 oveq2 5926 . . . . . . . . . . . . . . 15  |-  ( u  =  D  ->  (
_i  x.  u )  =  ( _i  x.  D ) )
7675oveq2d 5934 . . . . . . . . . . . . . 14  |-  ( u  =  D  ->  ( C  +  ( _i  x.  u ) )  =  ( C  +  ( _i  x.  D ) ) )
7776eqeq2d 2205 . . . . . . . . . . . . 13  |-  ( u  =  D  ->  (
( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) )  <->  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) ) )
7877anbi2d 464 . . . . . . . . . . . 12  |-  ( u  =  D  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( C  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) ) ) )
79 breq2 4033 . . . . . . . . . . . . 13  |-  ( u  =  D  ->  ( B #  u 
<->  B #  D ) )
8079orbi2d 791 . . . . . . . . . . . 12  |-  ( u  =  D  ->  (
( A #  C  \/  B #  u
)  <->  ( A #  C  \/  B #  D ) ) )
8178, 80anbi12d 473 . . . . . . . . . . 11  |-  ( u  =  D  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) ) )  /\  ( A #  C  \/  B #  u )
)  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) )  /\  ( A #  C  \/  B #  D )
) ) )
8274, 81rspc2ev 2879 . . . . . . . . . 10  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( C  +  ( _i  x.  D ) ) )  /\  ( A #  C  \/  B #  D ) ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u ) ) )
8368, 82syl3an3b 1287 . . . . . . . . 9  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  ( A #  C  \/  B #  D )
)  ->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
) )
84833expa 1205 . . . . . . . 8  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A #  C  \/  B #  D ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u ) ) )
85 oveq1 5925 . . . . . . . . . . . . 13  |-  ( r  =  A  ->  (
r  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  s
) ) )
8685eqeq2d 2205 . . . . . . . . . . . 12  |-  ( r  =  A  ->  (
( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  <->  ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s ) ) ) )
8786anbi1d 465 . . . . . . . . . . 11  |-  ( r  =  A  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) ) ) )
88 breq1 4032 . . . . . . . . . . . 12  |-  ( r  =  A  ->  (
r #  t  <->  A #  t ) )
8988orbi1d 792 . . . . . . . . . . 11  |-  ( r  =  A  ->  (
( r #  t  \/  s #  u
)  <->  ( A #  t  \/  s #  u ) ) )
9087, 89anbi12d 473 . . . . . . . . . 10  |-  ( r  =  A  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u )
) ) )
91902rexbidv 2519 . . . . . . . . 9  |-  ( r  =  A  ->  ( E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u )
) ) )
92 oveq2 5926 . . . . . . . . . . . . . 14  |-  ( s  =  B  ->  (
_i  x.  s )  =  ( _i  x.  B ) )
9392oveq2d 5934 . . . . . . . . . . . . 13  |-  ( s  =  B  ->  ( A  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  B ) ) )
9493eqeq2d 2205 . . . . . . . . . . . 12  |-  ( s  =  B  ->  (
( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s ) )  <->  ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) ) ) )
9594anbi1d 465 . . . . . . . . . . 11  |-  ( s  =  B  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) ) ) )
96 breq1 4032 . . . . . . . . . . . 12  |-  ( s  =  B  ->  (
s #  u  <->  B #  u ) )
9796orbi2d 791 . . . . . . . . . . 11  |-  ( s  =  B  ->  (
( A #  t  \/  s #  u
)  <->  ( A #  t  \/  B #  u ) ) )
9895, 97anbi12d 473 . . . . . . . . . 10  |-  ( s  =  B  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u )
)  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
) ) )
99982rexbidv 2519 . . . . . . . . 9  |-  ( s  =  B  ->  ( E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
) ) )
10091, 99rspc2ev 2879 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )
10184, 100syl3an3 1284 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( C  e.  RR  /\  D  e.  RR )  /\  ( A #  C  \/  B #  D ) ) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )
1021013expa 1205 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A #  C  \/  B #  D )
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )
103102anassrs 400 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )
10427adantr 276 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D
) )  ->  (
( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
105103, 104mpbird 167 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D
) )  ->  ( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D ) ) )
10664, 105sylbi 121 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D ) )  -> 
( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D
) ) )
107106ex 115 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A #  C  \/  B #  D )  ->  ( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D
) ) ) )
10860, 107impbid 129 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( C  +  ( _i  x.  D ) )  <->  ( A #  C  \/  B #  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871   _ici 7874    + caddc 7875    x. cmul 7877   # creap 8593   # cap 8600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601
This theorem is referenced by:  apirr  8624  apsym  8625  apcotr  8626  apadd1  8627  apneg  8630  mulext1  8631  apti  8641  recexaplem2  8671  crap0  8977  iap0  9205  cjap  11050  cnreim  11122  absext  11207
  Copyright terms: Public domain W3C validator