ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreim Unicode version

Theorem apreim 8522
Description: Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.)
Assertion
Ref Expression
apreim  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( C  +  ( _i  x.  D ) )  <->  ( A #  C  \/  B #  D
) ) )

Proof of Theorem apreim
Dummy variables  r  s  t  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 524 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
21recnd 7948 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  CC )
3 ax-icn 7869 . . . . . . 7  |-  _i  e.  CC
43a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  _i  e.  CC )
5 simplr 525 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR )
65recnd 7948 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  CC )
74, 6mulcld 7940 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  B
)  e.  CC )
82, 7addcld 7939 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  +  ( _i  x.  B ) )  e.  CC )
9 simprl 526 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR )
109recnd 7948 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  CC )
11 simprr 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
1211recnd 7948 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  CC )
134, 12mulcld 7940 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  D
)  e.  CC )
1410, 13addcld 7939 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  ( _i  x.  D ) )  e.  CC )
15 eqeq1 2177 . . . . . . . . 9  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  (
x  =  ( r  +  ( _i  x.  s ) )  <->  ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) ) ) )
1615anbi1d 462 . . . . . . . 8  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) ) ) )
1716anbi1d 462 . . . . . . 7  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  (
( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
18172rexbidv 2495 . . . . . 6  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  ( E. t  e.  RR  E. u  e.  RR  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
19182rexbidv 2495 . . . . 5  |-  ( x  =  ( A  +  ( _i  x.  B
) )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
20 eqeq1 2177 . . . . . . . . 9  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  (
y  =  ( t  +  ( _i  x.  u ) )  <->  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) ) )
2120anbi2d 461 . . . . . . . 8  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) ) ) )
2221anbi1d 462 . . . . . . 7  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
23222rexbidv 2495 . . . . . 6  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  ( E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
24232rexbidv 2495 . . . . 5  |-  ( y  =  ( C  +  ( _i  x.  D
) )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
25 df-ap 8501 . . . . 5  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
2619, 24, 25brabg 4254 . . . 4  |-  ( ( ( A  +  ( _i  x.  B ) )  e.  CC  /\  ( C  +  (
_i  x.  D )
)  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D ) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
278, 14, 26syl2anc 409 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( C  +  ( _i  x.  D ) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
28 simprr 527 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( r #  t  \/  s #  u ) )
291ad3antrrr 489 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  A  e.  RR )
309ad3antrrr 489 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  C  e.  RR )
31 apreap 8506 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A #  C  <->  A #  C )
)
3229, 30, 31syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A #  C  <->  A #  C ) )
335ad3antrrr 489 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  B  e.  RR )
3411ad3antrrr 489 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  D  e.  RR )
35 apreap 8506 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  D  e.  RR )  ->  ( B #  D  <->  B #  D )
)
3633, 34, 35syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( B #  D  <->  B #  D ) )
3732, 36orbi12d 788 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( A #  C  \/  B #  D
)  <->  ( A #  C  \/  B #  D ) ) )
38 simprll 532 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) ) )
39 simpllr 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( r  e.  RR  /\  s  e.  RR ) )
40 cru 8521 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( r  e.  RR  /\  s  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  <-> 
( A  =  r  /\  B  =  s ) ) )
4129, 33, 39, 40syl21anc 1232 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  <->  ( A  =  r  /\  B  =  s ) ) )
4238, 41mpbid 146 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A  =  r  /\  B  =  s ) )
4342simpld 111 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  A  =  r )
44 simprlr 533 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )
45 simplr 525 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( t  e.  RR  /\  u  e.  RR ) )
46 cru 8521 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) )  <-> 
( C  =  t  /\  D  =  u ) ) )
4730, 34, 45, 46syl21anc 1232 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) )  <->  ( C  =  t  /\  D  =  u ) ) )
4844, 47mpbid 146 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( C  =  t  /\  D  =  u ) )
4948simpld 111 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  C  =  t )
5043, 49breq12d 4002 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A #  C  <->  r #  t )
)
5142simprd 113 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  B  =  s )
5248simprd 113 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  D  =  u )
5351, 52breq12d 4002 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( B #  D  <->  s #  u )
)
5450, 53orbi12d 788 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( A #  C  \/  B #  D )  <->  ( r #  t  \/  s #  u ) ) )
5537, 54bitrd 187 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( ( A #  C  \/  B #  D
)  <->  ( r #  t  \/  s #  u ) ) )
5628, 55mpbird 166 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  (
_i  x.  D )
)  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) )  ->  ( A #  C  \/  B #  D )
)
5756ex 114 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  ->  ( A #  C  \/  B #  D
) ) )
5857rexlimdvva 2595 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( r  e.  RR  /\  s  e.  RR ) )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  ->  ( A #  C  \/  B #  D
) ) )
5958rexlimdvva 2595 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  ->  ( A #  C  \/  B #  D
) ) )
6027, 59sylbid 149 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( C  +  ( _i  x.  D ) )  -> 
( A #  C  \/  B #  D ) ) )
6131ad2ant2r 506 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A #  C  <->  A #  C )
)
6235ad2ant2l 505 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B #  D  <->  B #  D )
)
6361, 62orbi12d 788 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A #  C  \/  B #  D )  <->  ( A #  C  \/  B #  D ) ) )
6463pm5.32i 451 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D ) )  <->  ( (
( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D
) ) )
65 eqid 2170 . . . . . . . . . . . 12  |-  ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )
66 eqid 2170 . . . . . . . . . . . 12  |-  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) )
6765, 66pm3.2i 270 . . . . . . . . . . 11  |-  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) )
6867biantrur 301 . . . . . . . . . 10  |-  ( ( A #  C  \/  B #  D )  <-> 
( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) )  /\  ( A #  C  \/  B #  D )
) )
69 oveq1 5860 . . . . . . . . . . . . . 14  |-  ( t  =  C  ->  (
t  +  ( _i  x.  u ) )  =  ( C  +  ( _i  x.  u
) ) )
7069eqeq2d 2182 . . . . . . . . . . . . 13  |-  ( t  =  C  ->  (
( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) )  <->  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) ) ) )
7170anbi2d 461 . . . . . . . . . . . 12  |-  ( t  =  C  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) ) ) ) )
72 breq2 3993 . . . . . . . . . . . . 13  |-  ( t  =  C  ->  ( A #  t 
<->  A #  C ) )
7372orbi1d 786 . . . . . . . . . . . 12  |-  ( t  =  C  ->  (
( A #  t  \/  B #  u
)  <->  ( A #  C  \/  B #  u ) ) )
7471, 73anbi12d 470 . . . . . . . . . . 11  |-  ( t  =  C  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
)  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) ) )  /\  ( A #  C  \/  B #  u )
) ) )
75 oveq2 5861 . . . . . . . . . . . . . . 15  |-  ( u  =  D  ->  (
_i  x.  u )  =  ( _i  x.  D ) )
7675oveq2d 5869 . . . . . . . . . . . . . 14  |-  ( u  =  D  ->  ( C  +  ( _i  x.  u ) )  =  ( C  +  ( _i  x.  D ) ) )
7776eqeq2d 2182 . . . . . . . . . . . . 13  |-  ( u  =  D  ->  (
( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) )  <->  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) ) )
7877anbi2d 461 . . . . . . . . . . . 12  |-  ( u  =  D  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( C  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) ) ) )
79 breq2 3993 . . . . . . . . . . . . 13  |-  ( u  =  D  ->  ( B #  u 
<->  B #  D ) )
8079orbi2d 785 . . . . . . . . . . . 12  |-  ( u  =  D  ->  (
( A #  C  \/  B #  u
)  <->  ( A #  C  \/  B #  D ) ) )
8178, 80anbi12d 470 . . . . . . . . . . 11  |-  ( u  =  D  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  u ) ) )  /\  ( A #  C  \/  B #  u )
)  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( C  +  ( _i  x.  D ) ) )  /\  ( A #  C  \/  B #  D )
) ) )
8274, 81rspc2ev 2849 . . . . . . . . . 10  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( C  +  ( _i  x.  D ) ) )  /\  ( A #  C  \/  B #  D ) ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u ) ) )
8368, 82syl3an3b 1271 . . . . . . . . 9  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  ( A #  C  \/  B #  D )
)  ->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
) )
84833expa 1198 . . . . . . . 8  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A #  C  \/  B #  D ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u ) ) )
85 oveq1 5860 . . . . . . . . . . . . 13  |-  ( r  =  A  ->  (
r  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  s
) ) )
8685eqeq2d 2182 . . . . . . . . . . . 12  |-  ( r  =  A  ->  (
( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  <->  ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s ) ) ) )
8786anbi1d 462 . . . . . . . . . . 11  |-  ( r  =  A  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) ) ) )
88 breq1 3992 . . . . . . . . . . . 12  |-  ( r  =  A  ->  (
r #  t  <->  A #  t ) )
8988orbi1d 786 . . . . . . . . . . 11  |-  ( r  =  A  ->  (
( r #  t  \/  s #  u
)  <->  ( A #  t  \/  s #  u ) ) )
9087, 89anbi12d 470 . . . . . . . . . 10  |-  ( r  =  A  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u )
) ) )
91902rexbidv 2495 . . . . . . . . 9  |-  ( r  =  A  ->  ( E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( r  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u )
) ) )
92 oveq2 5861 . . . . . . . . . . . . . 14  |-  ( s  =  B  ->  (
_i  x.  s )  =  ( _i  x.  B ) )
9392oveq2d 5869 . . . . . . . . . . . . 13  |-  ( s  =  B  ->  ( A  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  B ) ) )
9493eqeq2d 2182 . . . . . . . . . . . 12  |-  ( s  =  B  ->  (
( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s ) )  <->  ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) ) ) )
9594anbi1d 462 . . . . . . . . . . 11  |-  ( s  =  B  ->  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) ) ) )
96 breq1 3992 . . . . . . . . . . . 12  |-  ( s  =  B  ->  (
s #  u  <->  B #  u ) )
9796orbi2d 785 . . . . . . . . . . 11  |-  ( s  =  B  ->  (
( A #  t  \/  s #  u
)  <->  ( A #  t  \/  B #  u ) ) )
9895, 97anbi12d 470 . . . . . . . . . 10  |-  ( s  =  B  ->  (
( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u )
)  <->  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
) ) )
99982rexbidv 2495 . . . . . . . . 9  |-  ( s  =  B  ->  ( E. t  e.  RR  E. u  e.  RR  (
( ( A  +  ( _i  x.  B
) )  =  ( A  +  ( _i  x.  s ) )  /\  ( C  +  ( _i  x.  D
) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
) ) )
10091, 99rspc2ev 2849 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( A  +  ( _i  x.  B
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  B #  u )
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )
10184, 100syl3an3 1268 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( C  e.  RR  /\  D  e.  RR )  /\  ( A #  C  \/  B #  D ) ) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )
1021013expa 1198 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  ( A #  C  \/  B #  D )
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )
103102anassrs 398 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )
10427adantr 274 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D
) )  ->  (
( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( A  +  ( _i  x.  B ) )  =  ( r  +  ( _i  x.  s
) )  /\  ( C  +  ( _i  x.  D ) )  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) ) )
105103, 104mpbird 166 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D
) )  ->  ( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D ) ) )
10664, 105sylbi 120 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A #  C  \/  B #  D ) )  -> 
( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D
) ) )
107106ex 114 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A #  C  \/  B #  D )  ->  ( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D
) ) ) )
10860, 107impbid 128 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) ) #  ( C  +  ( _i  x.  D ) )  <->  ( A #  C  \/  B #  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   _ici 7776    + caddc 7777    x. cmul 7779   # creap 8493   # cap 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501
This theorem is referenced by:  apirr  8524  apsym  8525  apcotr  8526  apadd1  8527  apneg  8530  mulext1  8531  apti  8541  recexaplem2  8570  crap0  8874  iap0  9101  cjap  10870  cnreim  10942  absext  11027
  Copyright terms: Public domain W3C validator