| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apti | Unicode version | ||
| Description: Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| Ref | Expression |
|---|---|
| apti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8070 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | cnre 8070 |
. . . . . . 7
| |
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | 4 | ad2antrr 488 |
. . . . 5
|
| 6 | simpr 110 |
. . . . . . . . . 10
| |
| 7 | 6 | ad3antrrr 492 |
. . . . . . . . 9
|
| 8 | simplr 528 |
. . . . . . . . 9
| |
| 9 | cru 8677 |
. . . . . . . . 9
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . . 8
|
| 11 | simpllr 534 |
. . . . . . . . 9
| |
| 12 | simpr 110 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eqeq12d 2220 |
. . . . . . . 8
|
| 14 | apreim 8678 |
. . . . . . . . . . . 12
| |
| 15 | 14 | notbid 669 |
. . . . . . . . . . 11
|
| 16 | ioran 754 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | bitrdi 196 |
. . . . . . . . . 10
|
| 18 | 7, 8, 17 | syl2anc 411 |
. . . . . . . . 9
|
| 19 | 11, 12 | breq12d 4058 |
. . . . . . . . . 10
|
| 20 | 19 | notbid 669 |
. . . . . . . . 9
|
| 21 | 7 | simpld 112 |
. . . . . . . . . . 11
|
| 22 | 8 | simpld 112 |
. . . . . . . . . . 11
|
| 23 | reapti 8654 |
. . . . . . . . . . . 12
| |
| 24 | apreap 8662 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | notbid 669 |
. . . . . . . . . . . 12
|
| 26 | 23, 25 | bitr4d 191 |
. . . . . . . . . . 11
|
| 27 | 21, 22, 26 | syl2anc 411 |
. . . . . . . . . 10
|
| 28 | 7 | simprd 114 |
. . . . . . . . . . 11
|
| 29 | 8 | simprd 114 |
. . . . . . . . . . 11
|
| 30 | reapti 8654 |
. . . . . . . . . . . 12
| |
| 31 | apreap 8662 |
. . . . . . . . . . . . 13
| |
| 32 | 31 | notbid 669 |
. . . . . . . . . . . 12
|
| 33 | 30, 32 | bitr4d 191 |
. . . . . . . . . . 11
|
| 34 | 28, 29, 33 | syl2anc 411 |
. . . . . . . . . 10
|
| 35 | 27, 34 | anbi12d 473 |
. . . . . . . . 9
|
| 36 | 18, 20, 35 | 3bitr4d 220 |
. . . . . . . 8
|
| 37 | 10, 13, 36 | 3bitr4d 220 |
. . . . . . 7
|
| 38 | 37 | ex 115 |
. . . . . 6
|
| 39 | 38 | rexlimdvva 2631 |
. . . . 5
|
| 40 | 5, 39 | mpd 13 |
. . . 4
|
| 41 | 40 | ex 115 |
. . 3
|
| 42 | 41 | rexlimdvva 2631 |
. 2
|
| 43 | 2, 42 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 |
| This theorem is referenced by: apne 8698 apcon4bid 8699 cnstab 8720 aptap 8725 qapne 9762 expeq0 10717 nn0opthd 10869 recvguniq 11339 climuni 11637 dedekindeu 15128 dedekindicclemicc 15137 ivthinc 15148 limcimo 15170 cnplimclemle 15173 coseq0q4123 15339 cos11 15358 refeq 16004 triap 16005 |
| Copyright terms: Public domain | W3C validator |