Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > apti | Unicode version |
Description: Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.) |
Ref | Expression |
---|---|
apti | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7903 | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | cnre 7903 | . . . . . . 7 | |
4 | 3 | adantl 275 | . . . . . 6 |
5 | 4 | ad2antrr 485 | . . . . 5 |
6 | simpr 109 | . . . . . . . . . 10 | |
7 | 6 | ad3antrrr 489 | . . . . . . . . 9 |
8 | simplr 525 | . . . . . . . . 9 | |
9 | cru 8508 | . . . . . . . . 9 | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . . . 8 |
11 | simpllr 529 | . . . . . . . . 9 | |
12 | simpr 109 | . . . . . . . . 9 | |
13 | 11, 12 | eqeq12d 2185 | . . . . . . . 8 |
14 | apreim 8509 | . . . . . . . . . . . 12 # # # | |
15 | 14 | notbid 662 | . . . . . . . . . . 11 # # # |
16 | ioran 747 | . . . . . . . . . . 11 # # # # | |
17 | 15, 16 | bitrdi 195 | . . . . . . . . . 10 # # # |
18 | 7, 8, 17 | syl2anc 409 | . . . . . . . . 9 # # # |
19 | 11, 12 | breq12d 4000 | . . . . . . . . . 10 # # |
20 | 19 | notbid 662 | . . . . . . . . 9 # # |
21 | 7 | simpld 111 | . . . . . . . . . . 11 |
22 | 8 | simpld 111 | . . . . . . . . . . 11 |
23 | reapti 8485 | . . . . . . . . . . . 12 #ℝ | |
24 | apreap 8493 | . . . . . . . . . . . . 13 # #ℝ | |
25 | 24 | notbid 662 | . . . . . . . . . . . 12 # #ℝ |
26 | 23, 25 | bitr4d 190 | . . . . . . . . . . 11 # |
27 | 21, 22, 26 | syl2anc 409 | . . . . . . . . . 10 # |
28 | 7 | simprd 113 | . . . . . . . . . . 11 |
29 | 8 | simprd 113 | . . . . . . . . . . 11 |
30 | reapti 8485 | . . . . . . . . . . . 12 #ℝ | |
31 | apreap 8493 | . . . . . . . . . . . . 13 # #ℝ | |
32 | 31 | notbid 662 | . . . . . . . . . . . 12 # #ℝ |
33 | 30, 32 | bitr4d 190 | . . . . . . . . . . 11 # |
34 | 28, 29, 33 | syl2anc 409 | . . . . . . . . . 10 # |
35 | 27, 34 | anbi12d 470 | . . . . . . . . 9 # # |
36 | 18, 20, 35 | 3bitr4d 219 | . . . . . . . 8 # |
37 | 10, 13, 36 | 3bitr4d 219 | . . . . . . 7 # |
38 | 37 | ex 114 | . . . . . 6 # |
39 | 38 | rexlimdvva 2595 | . . . . 5 # |
40 | 5, 39 | mpd 13 | . . . 4 # |
41 | 40 | ex 114 | . . 3 # |
42 | 41 | rexlimdvva 2595 | . 2 # |
43 | 2, 42 | mpd 13 | 1 # |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3987 (class class class)co 5850 cc 7759 cr 7760 ci 7763 caddc 7764 cmul 7766 #ℝ creap 8480 # cap 8487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-ltxr 7946 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 |
This theorem is referenced by: apne 8529 apcon4bid 8530 cnstab 8551 qapne 9585 expeq0 10494 nn0opthd 10643 recvguniq 10946 climuni 11243 dedekindeu 13354 dedekindicclemicc 13363 ivthinc 13374 limcimo 13387 cnplimclemle 13390 coseq0q4123 13508 cos11 13527 refeq 14020 triap 14021 |
Copyright terms: Public domain | W3C validator |