| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apti | Unicode version | ||
| Description: Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| Ref | Expression |
|---|---|
| apti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8039 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | cnre 8039 |
. . . . . . 7
| |
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | 4 | ad2antrr 488 |
. . . . 5
|
| 6 | simpr 110 |
. . . . . . . . . 10
| |
| 7 | 6 | ad3antrrr 492 |
. . . . . . . . 9
|
| 8 | simplr 528 |
. . . . . . . . 9
| |
| 9 | cru 8646 |
. . . . . . . . 9
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . . 8
|
| 11 | simpllr 534 |
. . . . . . . . 9
| |
| 12 | simpr 110 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eqeq12d 2211 |
. . . . . . . 8
|
| 14 | apreim 8647 |
. . . . . . . . . . . 12
| |
| 15 | 14 | notbid 668 |
. . . . . . . . . . 11
|
| 16 | ioran 753 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | bitrdi 196 |
. . . . . . . . . 10
|
| 18 | 7, 8, 17 | syl2anc 411 |
. . . . . . . . 9
|
| 19 | 11, 12 | breq12d 4047 |
. . . . . . . . . 10
|
| 20 | 19 | notbid 668 |
. . . . . . . . 9
|
| 21 | 7 | simpld 112 |
. . . . . . . . . . 11
|
| 22 | 8 | simpld 112 |
. . . . . . . . . . 11
|
| 23 | reapti 8623 |
. . . . . . . . . . . 12
| |
| 24 | apreap 8631 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | notbid 668 |
. . . . . . . . . . . 12
|
| 26 | 23, 25 | bitr4d 191 |
. . . . . . . . . . 11
|
| 27 | 21, 22, 26 | syl2anc 411 |
. . . . . . . . . 10
|
| 28 | 7 | simprd 114 |
. . . . . . . . . . 11
|
| 29 | 8 | simprd 114 |
. . . . . . . . . . 11
|
| 30 | reapti 8623 |
. . . . . . . . . . . 12
| |
| 31 | apreap 8631 |
. . . . . . . . . . . . 13
| |
| 32 | 31 | notbid 668 |
. . . . . . . . . . . 12
|
| 33 | 30, 32 | bitr4d 191 |
. . . . . . . . . . 11
|
| 34 | 28, 29, 33 | syl2anc 411 |
. . . . . . . . . 10
|
| 35 | 27, 34 | anbi12d 473 |
. . . . . . . . 9
|
| 36 | 18, 20, 35 | 3bitr4d 220 |
. . . . . . . 8
|
| 37 | 10, 13, 36 | 3bitr4d 220 |
. . . . . . 7
|
| 38 | 37 | ex 115 |
. . . . . 6
|
| 39 | 38 | rexlimdvva 2622 |
. . . . 5
|
| 40 | 5, 39 | mpd 13 |
. . . 4
|
| 41 | 40 | ex 115 |
. . 3
|
| 42 | 41 | rexlimdvva 2622 |
. 2
|
| 43 | 2, 42 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 |
| This theorem is referenced by: apne 8667 apcon4bid 8668 cnstab 8689 aptap 8694 qapne 9730 expeq0 10679 nn0opthd 10831 recvguniq 11177 climuni 11475 dedekindeu 14943 dedekindicclemicc 14952 ivthinc 14963 limcimo 14985 cnplimclemle 14988 coseq0q4123 15154 cos11 15173 refeq 15759 triap 15760 |
| Copyright terms: Public domain | W3C validator |