| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apti | Unicode version | ||
| Description: Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| Ref | Expression |
|---|---|
| apti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8142 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | cnre 8142 |
. . . . . . 7
| |
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | 4 | ad2antrr 488 |
. . . . 5
|
| 6 | simpr 110 |
. . . . . . . . . 10
| |
| 7 | 6 | ad3antrrr 492 |
. . . . . . . . 9
|
| 8 | simplr 528 |
. . . . . . . . 9
| |
| 9 | cru 8749 |
. . . . . . . . 9
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . . 8
|
| 11 | simpllr 534 |
. . . . . . . . 9
| |
| 12 | simpr 110 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eqeq12d 2244 |
. . . . . . . 8
|
| 14 | apreim 8750 |
. . . . . . . . . . . 12
| |
| 15 | 14 | notbid 671 |
. . . . . . . . . . 11
|
| 16 | ioran 757 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | bitrdi 196 |
. . . . . . . . . 10
|
| 18 | 7, 8, 17 | syl2anc 411 |
. . . . . . . . 9
|
| 19 | 11, 12 | breq12d 4096 |
. . . . . . . . . 10
|
| 20 | 19 | notbid 671 |
. . . . . . . . 9
|
| 21 | 7 | simpld 112 |
. . . . . . . . . . 11
|
| 22 | 8 | simpld 112 |
. . . . . . . . . . 11
|
| 23 | reapti 8726 |
. . . . . . . . . . . 12
| |
| 24 | apreap 8734 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | notbid 671 |
. . . . . . . . . . . 12
|
| 26 | 23, 25 | bitr4d 191 |
. . . . . . . . . . 11
|
| 27 | 21, 22, 26 | syl2anc 411 |
. . . . . . . . . 10
|
| 28 | 7 | simprd 114 |
. . . . . . . . . . 11
|
| 29 | 8 | simprd 114 |
. . . . . . . . . . 11
|
| 30 | reapti 8726 |
. . . . . . . . . . . 12
| |
| 31 | apreap 8734 |
. . . . . . . . . . . . 13
| |
| 32 | 31 | notbid 671 |
. . . . . . . . . . . 12
|
| 33 | 30, 32 | bitr4d 191 |
. . . . . . . . . . 11
|
| 34 | 28, 29, 33 | syl2anc 411 |
. . . . . . . . . 10
|
| 35 | 27, 34 | anbi12d 473 |
. . . . . . . . 9
|
| 36 | 18, 20, 35 | 3bitr4d 220 |
. . . . . . . 8
|
| 37 | 10, 13, 36 | 3bitr4d 220 |
. . . . . . 7
|
| 38 | 37 | ex 115 |
. . . . . 6
|
| 39 | 38 | rexlimdvva 2656 |
. . . . 5
|
| 40 | 5, 39 | mpd 13 |
. . . 4
|
| 41 | 40 | ex 115 |
. . 3
|
| 42 | 41 | rexlimdvva 2656 |
. 2
|
| 43 | 2, 42 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 |
| This theorem is referenced by: apne 8770 apcon4bid 8771 cnstab 8792 aptap 8797 qapne 9834 expeq0 10792 nn0opthd 10944 recvguniq 11506 climuni 11804 dedekindeu 15297 dedekindicclemicc 15306 ivthinc 15317 limcimo 15339 cnplimclemle 15342 coseq0q4123 15508 cos11 15527 refeq 16396 triap 16397 |
| Copyright terms: Public domain | W3C validator |