ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apti Unicode version

Theorem apti 8377
Description: Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
apti  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)

Proof of Theorem apti
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7755 . . 3  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
21adantr 274 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
3 cnre 7755 . . . . . . 7  |-  ( B  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
43adantl 275 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) ) )
54ad2antrr 479 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
6 simpr 109 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  e.  RR  /\  y  e.  RR ) )
76ad3antrrr 483 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
x  e.  RR  /\  y  e.  RR )
)
8 simplr 519 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
z  e.  RR  /\  w  e.  RR )
)
9 cru 8357 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
107, 8, 9syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
( x  +  ( _i  x.  y ) )  =  ( z  +  ( _i  x.  w ) )  <->  ( x  =  z  /\  y  =  w ) ) )
11 simpllr 523 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
12 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  B  =  ( z  +  ( _i  x.  w
) ) )
1311, 12eqeq12d 2152 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A  =  B  <->  ( x  +  ( _i  x.  y ) )  =  ( z  +  ( _i  x.  w ) ) ) )
14 apreim 8358 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) )  <->  ( x #  z  \/  y #  w
) ) )
1514notbid 656 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( -.  ( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w ) )  <->  -.  ( x #  z  \/  y #  w ) ) )
16 ioran 741 . . . . . . . . . . 11  |-  ( -.  ( x #  z  \/  y #  w )  <->  ( -.  x #  z  /\  -.  y #  w ) )
1715, 16syl6bb 195 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( -.  ( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w ) )  <-> 
( -.  x #  z  /\  -.  y #  w ) ) )
187, 8, 17syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( -.  ( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( -.  x #  z  /\  -.  y #  w ) ) )
1911, 12breq12d 3937 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A #  B  <->  ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) ) ) )
2019notbid 656 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( -.  A #  B  <->  -.  (
x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w ) ) ) )
217simpld 111 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  x  e.  RR )
228simpld 111 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  z  e.  RR )
23 reapti 8334 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x  =  z  <->  -.  x #  z ) )
24 apreap 8342 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x #  z  <->  x #  z )
)
2524notbid 656 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( -.  x #  z  <->  -.  x #  z ) )
2623, 25bitr4d 190 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x  =  z  <->  -.  x #  z )
)
2721, 22, 26syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
x  =  z  <->  -.  x #  z ) )
287simprd 113 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  y  e.  RR )
298simprd 113 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  w  e.  RR )
30 reapti 8334 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( y  =  w  <->  -.  y #  w ) )
31 apreap 8342 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( y #  w  <->  y #  w )
)
3231notbid 656 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( -.  y #  w  <->  -.  y #  w ) )
3330, 32bitr4d 190 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( y  =  w  <->  -.  y #  w )
)
3428, 29, 33syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
y  =  w  <->  -.  y #  w ) )
3527, 34anbi12d 464 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  (
( x  =  z  /\  y  =  w )  <->  ( -.  x #  z  /\  -.  y #  w ) ) )
3618, 20, 353bitr4d 219 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( -.  A #  B  <->  ( x  =  z  /\  y  =  w ) ) )
3710, 13, 363bitr4d 219 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  A  =  ( x  +  ( _i  x.  y ) ) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A  =  B  <->  -.  A #  B ) )
3837ex 114 . . . . . 6  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  /\  (
z  e.  RR  /\  w  e.  RR )
)  ->  ( B  =  ( z  +  ( _i  x.  w
) )  ->  ( A  =  B  <->  -.  A #  B ) ) )
3938rexlimdvva 2555 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) )  ->  ( A  =  B  <->  -.  A #  B ) ) )
405, 39mpd 13 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A  =  B  <->  -.  A #  B ) )
4140ex 114 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( A  =  ( x  +  ( _i  x.  y ) )  ->  ( A  =  B  <->  -.  A #  B
) ) )
4241rexlimdvva 2555 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) )  ->  ( A  =  B  <->  -.  A #  B
) ) )
432, 42mpd 13 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   CCcc 7611   RRcr 7612   _ici 7615    + caddc 7616    x. cmul 7618   # creap 8329   # cap 8336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-ltxr 7798  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337
This theorem is referenced by:  apne  8378  apcon4bid  8379  cnstab  8400  qapne  9424  expeq0  10317  nn0opthd  10461  recvguniq  10760  climuni  11055  dedekindeu  12759  dedekindicclemicc  12768  ivthinc  12779  limcimo  12792  cnplimclemle  12795  coseq0q4123  12904  refeq  13212  triap  13213
  Copyright terms: Public domain W3C validator