| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apti | Unicode version | ||
| Description: Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| Ref | Expression |
|---|---|
| apti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8103 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | cnre 8103 |
. . . . . . 7
| |
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | 4 | ad2antrr 488 |
. . . . 5
|
| 6 | simpr 110 |
. . . . . . . . . 10
| |
| 7 | 6 | ad3antrrr 492 |
. . . . . . . . 9
|
| 8 | simplr 528 |
. . . . . . . . 9
| |
| 9 | cru 8710 |
. . . . . . . . 9
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . . 8
|
| 11 | simpllr 534 |
. . . . . . . . 9
| |
| 12 | simpr 110 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eqeq12d 2222 |
. . . . . . . 8
|
| 14 | apreim 8711 |
. . . . . . . . . . . 12
| |
| 15 | 14 | notbid 669 |
. . . . . . . . . . 11
|
| 16 | ioran 754 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | bitrdi 196 |
. . . . . . . . . 10
|
| 18 | 7, 8, 17 | syl2anc 411 |
. . . . . . . . 9
|
| 19 | 11, 12 | breq12d 4072 |
. . . . . . . . . 10
|
| 20 | 19 | notbid 669 |
. . . . . . . . 9
|
| 21 | 7 | simpld 112 |
. . . . . . . . . . 11
|
| 22 | 8 | simpld 112 |
. . . . . . . . . . 11
|
| 23 | reapti 8687 |
. . . . . . . . . . . 12
| |
| 24 | apreap 8695 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | notbid 669 |
. . . . . . . . . . . 12
|
| 26 | 23, 25 | bitr4d 191 |
. . . . . . . . . . 11
|
| 27 | 21, 22, 26 | syl2anc 411 |
. . . . . . . . . 10
|
| 28 | 7 | simprd 114 |
. . . . . . . . . . 11
|
| 29 | 8 | simprd 114 |
. . . . . . . . . . 11
|
| 30 | reapti 8687 |
. . . . . . . . . . . 12
| |
| 31 | apreap 8695 |
. . . . . . . . . . . . 13
| |
| 32 | 31 | notbid 669 |
. . . . . . . . . . . 12
|
| 33 | 30, 32 | bitr4d 191 |
. . . . . . . . . . 11
|
| 34 | 28, 29, 33 | syl2anc 411 |
. . . . . . . . . 10
|
| 35 | 27, 34 | anbi12d 473 |
. . . . . . . . 9
|
| 36 | 18, 20, 35 | 3bitr4d 220 |
. . . . . . . 8
|
| 37 | 10, 13, 36 | 3bitr4d 220 |
. . . . . . 7
|
| 38 | 37 | ex 115 |
. . . . . 6
|
| 39 | 38 | rexlimdvva 2633 |
. . . . 5
|
| 40 | 5, 39 | mpd 13 |
. . . 4
|
| 41 | 40 | ex 115 |
. . 3
|
| 42 | 41 | rexlimdvva 2633 |
. 2
|
| 43 | 2, 42 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 |
| This theorem is referenced by: apne 8731 apcon4bid 8732 cnstab 8753 aptap 8758 qapne 9795 expeq0 10752 nn0opthd 10904 recvguniq 11421 climuni 11719 dedekindeu 15210 dedekindicclemicc 15219 ivthinc 15230 limcimo 15252 cnplimclemle 15255 coseq0q4123 15421 cos11 15440 refeq 16169 triap 16170 |
| Copyright terms: Public domain | W3C validator |