ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreap Unicode version

Theorem apreap 8734
Description: Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
Assertion
Ref Expression
apreap  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  A #  B )
)

Proof of Theorem apreap
Dummy variables  r  s  t  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . . . . . . 8  |-  ( x  =  A  ->  (
x  =  ( r  +  ( _i  x.  s ) )  <->  A  =  ( r  +  ( _i  x.  s ) ) ) )
21anbi1d 465 . . . . . . 7  |-  ( x  =  A  ->  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) ) ) )
32anbi1d 465 . . . . . 6  |-  ( x  =  A  ->  (
( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
432rexbidv 2555 . . . . 5  |-  ( x  =  A  ->  ( E. t  e.  RR  E. u  e.  RR  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
542rexbidv 2555 . . . 4  |-  ( x  =  A  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
6 eqeq1 2236 . . . . . . . 8  |-  ( y  =  B  ->  (
y  =  ( t  +  ( _i  x.  u ) )  <->  B  =  ( t  +  ( _i  x.  u ) ) ) )
76anbi2d 464 . . . . . . 7  |-  ( y  =  B  ->  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) ) ) )
87anbi1d 465 . . . . . 6  |-  ( y  =  B  ->  (
( ( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
982rexbidv 2555 . . . . 5  |-  ( y  =  B  ->  ( E. t  e.  RR  E. u  e.  RR  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
1092rexbidv 2555 . . . 4  |-  ( y  =  B  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
11 df-ap 8729 . . . 4  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
125, 10, 11brabg 4357 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
13 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  ->  A  e.  RR )
1413adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  A  e.  RR )
15 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
r  e.  RR )
1615adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  r  e.  RR )
17 simplrr 536 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
s  e.  RR )
1817adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  s  e.  RR )
19 simprll 537 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  A  =  ( r  +  ( _i  x.  s
) ) )
20 rereim 8733 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  r  e.  RR )  /\  ( s  e.  RR  /\  A  =  ( r  +  ( _i  x.  s ) ) ) )  -> 
( r  =  A  /\  s  =  0 ) )
2114, 16, 18, 19, 20syl22anc 1272 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
r  =  A  /\  s  =  0 ) )
2221simprd 114 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  s  =  0 )
23 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  ->  B  e.  RR )
2423adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  B  e.  RR )
25 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  t  e.  RR )
26 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  u  e.  RR )
27 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  B  =  ( t  +  ( _i  x.  u
) ) )
28 rereim 8733 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  t  e.  RR )  /\  ( u  e.  RR  /\  B  =  ( t  +  ( _i  x.  u ) ) ) )  -> 
( t  =  B  /\  u  =  0 ) )
2924, 25, 26, 27, 28syl22anc 1272 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
t  =  B  /\  u  =  0 ) )
3029simprd 114 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  u  =  0 )
3122, 30eqtr4d 2265 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  s  =  u )
32 reapti 8726 . . . . . . . . . 10  |-  ( ( s  e.  RR  /\  u  e.  RR )  ->  ( s  =  u  <->  -.  s #  u ) )
3318, 26, 32syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
s  =  u  <->  -.  s #  u
) )
3431, 33mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  -.  s #  u )
35 simprr 531 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
r #  t  \/  s #  u ) )
3634, 35ecased 1383 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  r #  t
)
3721simpld 112 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  r  =  A )
3829simpld 112 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  t  =  B )
3936, 37, 383brtr3d 4114 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  A #  B
)
4039ex 115 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  A #  B
) )
4140rexlimdvva 2656 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( r  e.  RR  /\  s  e.  RR ) )  -> 
( E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  A #  B
) )
4241rexlimdvva 2656 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  A #  B
) )
4312, 42sylbid 150 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  ->  A #  B ) )
44 ax-icn 8094 . . . . . . . 8  |-  _i  e.  CC
4544mul01i 8537 . . . . . . 7  |-  ( _i  x.  0 )  =  0
4645oveq2i 6012 . . . . . 6  |-  ( A  +  ( _i  x.  0 ) )  =  ( A  +  0 )
47 simp1 1021 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A  e.  RR )
4847recnd 8175 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A  e.  CC )
4948addridd 8295 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( A  +  0 )  =  A )
5046, 49eqtr2id 2275 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A  =  ( A  +  (
_i  x.  0 ) ) )
5145oveq2i 6012 . . . . . 6  |-  ( B  +  ( _i  x.  0 ) )  =  ( B  +  0 )
52 simp2 1022 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  B  e.  RR )
5352recnd 8175 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  B  e.  CC )
5453addridd 8295 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( B  +  0 )  =  B )
5551, 54eqtr2id 2275 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  B  =  ( B  +  (
_i  x.  0 ) ) )
56 olc 716 . . . . . . 7  |-  ( A #  B  ->  ( 0 #  0  \/  A #  B ) )
57563ad2ant3 1044 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( 0 #  0  \/  A #  B ) )
5857orcomd 734 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( A #  B  \/  0 #  0 ) )
5950, 55, 58jca31 309 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) ) )
60 0red 8147 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  0  e.  RR )
61 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  ->  u  =  0 )
6261oveq2d 6017 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( _i  x.  u
)  =  ( _i  x.  0 ) )
6362oveq2d 6017 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( B  +  ( _i  x.  u ) )  =  ( B  +  ( _i  x.  0 ) ) )
6463eqeq2d 2241 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( B  =  ( B  +  ( _i  x.  u ) )  <-> 
B  =  ( B  +  ( _i  x.  0 ) ) ) )
6564anbi2d 464 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( B  +  ( _i  x.  0
) ) ) ) )
6661breq2d 4095 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( 0 #  u  <->  0 #  0 ) )
6766orbi2d 795 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( ( A #  B  \/  0 #  u )  <->  ( A #  B  \/  0 #  0 ) ) )
6865, 67anbi12d 473 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( B  +  ( _i  x.  u
) ) )  /\  ( A #  B  \/  0 #  u
) )  <->  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) ) ) )
6960, 68rspcedv 2911 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  /\  ( A #  B  \/  0 #  u ) ) ) )
70 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  t  =  B )
7170oveq1d 6016 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
t  +  ( _i  x.  u ) )  =  ( B  +  ( _i  x.  u
) ) )
7271eqeq2d 2241 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  ( B  =  ( t  +  ( _i  x.  u ) )  <->  B  =  ( B  +  (
_i  x.  u )
) ) )
7372anbi2d 464 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) ) ) )
7470breq2d 4095 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  ( A #  t 
<->  A #  B ) )
7574orbi1d 796 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
( A #  t  \/  0 #  u
)  <->  ( A #  B  \/  0 #  u ) ) )
7673, 75anbi12d 473 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) )  <->  ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( B  +  ( _i  x.  u
) ) )  /\  ( A #  B  \/  0 #  u
) ) ) )
7776rexbidv 2531 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  ( E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) )  <->  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  /\  ( A #  B  \/  0 #  u ) ) ) )
7852, 77rspcedv 2911 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( E. u  e.  RR  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  /\  ( A #  B  \/  0 #  u ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) ) ) )
7969, 78syld 45 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) ) ) )
80 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
s  =  0 )
8180oveq2d 6017 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( _i  x.  s
)  =  ( _i  x.  0 ) )
8281oveq2d 6017 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( A  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  0 ) ) )
8382eqeq2d 2241 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( A  =  ( A  +  ( _i  x.  s ) )  <-> 
A  =  ( A  +  ( _i  x.  0 ) ) ) )
8483anbi1d 465 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( ( A  =  ( A  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) ) ) )
8580breq1d 4093 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( s #  u  <->  0 #  u ) )
8685orbi2d 795 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( ( A #  t  \/  s #  u )  <->  ( A #  t  \/  0 #  u ) ) )
8784, 86anbi12d 473 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) )  <->  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) ) ) )
88872rexbidv 2555 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  0 #  u
) ) ) )
8960, 88rspcedv 2911 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  0 #  u
) )  ->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) ) ) )
90 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  r  =  A )
9190oveq1d 6016 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
r  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  s
) ) )
9291eqeq2d 2241 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  ( A  =  ( r  +  ( _i  x.  s ) )  <->  A  =  ( A  +  (
_i  x.  s )
) ) )
9392anbi1d 465 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) ) ) )
9490breq1d 4093 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
r #  t  <->  A #  t ) )
9594orbi1d 796 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
( r #  t  \/  s #  u
)  <->  ( A #  t  \/  s #  u ) ) )
9693, 95anbi12d 473 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) ) ) )
9796rexbidv 2531 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  ( E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u )
) ) )
98972rexbidv 2555 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) ) ) )
9947, 98rspcedv 2911 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
10079, 89, 993syld 57 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
101123adant3 1041 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( A #  B 
<->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
102100, 101sylibrd 169 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  A #  B ) )
10359, 102mpd 13 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A #  B
)
1041033expia 1229 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  ->  A #  B
) )
10543, 104impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  A #  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   _ici 8001    + caddc 8002    x. cmul 8004   # creap 8721   # cap 8728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729
This theorem is referenced by:  reaplt  8735  apreim  8750  apirr  8752  apti  8769  recexap  8800  rerecclap  8877
  Copyright terms: Public domain W3C validator