ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreap Unicode version

Theorem apreap 8534
Description: Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
Assertion
Ref Expression
apreap  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  A #  B )
)

Proof of Theorem apreap
Dummy variables  r  s  t  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2184 . . . . . . . 8  |-  ( x  =  A  ->  (
x  =  ( r  +  ( _i  x.  s ) )  <->  A  =  ( r  +  ( _i  x.  s ) ) ) )
21anbi1d 465 . . . . . . 7  |-  ( x  =  A  ->  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) ) ) )
32anbi1d 465 . . . . . 6  |-  ( x  =  A  ->  (
( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
432rexbidv 2502 . . . . 5  |-  ( x  =  A  ->  ( E. t  e.  RR  E. u  e.  RR  (
( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
542rexbidv 2502 . . . 4  |-  ( x  =  A  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
6 eqeq1 2184 . . . . . . . 8  |-  ( y  =  B  ->  (
y  =  ( t  +  ( _i  x.  u ) )  <->  B  =  ( t  +  ( _i  x.  u ) ) ) )
76anbi2d 464 . . . . . . 7  |-  ( y  =  B  ->  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) ) ) )
87anbi1d 465 . . . . . 6  |-  ( y  =  B  ->  (
( ( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
982rexbidv 2502 . . . . 5  |-  ( y  =  B  ->  ( E. t  e.  RR  E. u  e.  RR  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
1092rexbidv 2502 . . . 4  |-  ( y  =  B  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
11 df-ap 8529 . . . 4  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
125, 10, 11brabg 4266 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
13 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  ->  A  e.  RR )
1413adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  A  e.  RR )
15 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
r  e.  RR )
1615adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  r  e.  RR )
17 simplrr 536 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
s  e.  RR )
1817adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  s  e.  RR )
19 simprll 537 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  A  =  ( r  +  ( _i  x.  s
) ) )
20 rereim 8533 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  r  e.  RR )  /\  ( s  e.  RR  /\  A  =  ( r  +  ( _i  x.  s ) ) ) )  -> 
( r  =  A  /\  s  =  0 ) )
2114, 16, 18, 19, 20syl22anc 1239 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
r  =  A  /\  s  =  0 ) )
2221simprd 114 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  s  =  0 )
23 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  ->  B  e.  RR )
2423adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  B  e.  RR )
25 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  t  e.  RR )
26 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  u  e.  RR )
27 simprlr 538 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  B  =  ( t  +  ( _i  x.  u
) ) )
28 rereim 8533 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  t  e.  RR )  /\  ( u  e.  RR  /\  B  =  ( t  +  ( _i  x.  u ) ) ) )  -> 
( t  =  B  /\  u  =  0 ) )
2924, 25, 26, 27, 28syl22anc 1239 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
t  =  B  /\  u  =  0 ) )
3029simprd 114 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  u  =  0 )
3122, 30eqtr4d 2213 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  s  =  u )
32 reapti 8526 . . . . . . . . . 10  |-  ( ( s  e.  RR  /\  u  e.  RR )  ->  ( s  =  u  <->  -.  s #  u ) )
3318, 26, 32syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
s  =  u  <->  -.  s #  u
) )
3431, 33mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  -.  s #  u )
35 simprr 531 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  (
r #  t  \/  s #  u ) )
3634, 35ecased 1349 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  r #  t
)
3721simpld 112 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  r  =  A )
3829simpld 112 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  t  =  B )
3936, 37, 383brtr3d 4031 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) ) )  ->  A #  B
)
4039ex 115 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
r  e.  RR  /\  s  e.  RR )
)  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  A #  B
) )
4140rexlimdvva 2602 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( r  e.  RR  /\  s  e.  RR ) )  -> 
( E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  A #  B
) )
4241rexlimdvva 2602 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  A #  B
) )
4312, 42sylbid 150 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  ->  A #  B ) )
44 ax-icn 7897 . . . . . . . 8  |-  _i  e.  CC
4544mul01i 8338 . . . . . . 7  |-  ( _i  x.  0 )  =  0
4645oveq2i 5880 . . . . . 6  |-  ( A  +  ( _i  x.  0 ) )  =  ( A  +  0 )
47 simp1 997 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A  e.  RR )
4847recnd 7976 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A  e.  CC )
4948addid1d 8096 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( A  +  0 )  =  A )
5046, 49eqtr2id 2223 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A  =  ( A  +  (
_i  x.  0 ) ) )
5145oveq2i 5880 . . . . . 6  |-  ( B  +  ( _i  x.  0 ) )  =  ( B  +  0 )
52 simp2 998 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  B  e.  RR )
5352recnd 7976 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  B  e.  CC )
5453addid1d 8096 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( B  +  0 )  =  B )
5551, 54eqtr2id 2223 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  B  =  ( B  +  (
_i  x.  0 ) ) )
56 olc 711 . . . . . . 7  |-  ( A #  B  ->  ( 0 #  0  \/  A #  B ) )
57563ad2ant3 1020 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( 0 #  0  \/  A #  B ) )
5857orcomd 729 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( A #  B  \/  0 #  0 ) )
5950, 55, 58jca31 309 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) ) )
60 0red 7949 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  0  e.  RR )
61 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  ->  u  =  0 )
6261oveq2d 5885 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( _i  x.  u
)  =  ( _i  x.  0 ) )
6362oveq2d 5885 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( B  +  ( _i  x.  u ) )  =  ( B  +  ( _i  x.  0 ) ) )
6463eqeq2d 2189 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( B  =  ( B  +  ( _i  x.  u ) )  <-> 
B  =  ( B  +  ( _i  x.  0 ) ) ) )
6564anbi2d 464 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( B  +  ( _i  x.  0
) ) ) ) )
6661breq2d 4012 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( 0 #  u  <->  0 #  0 ) )
6766orbi2d 790 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( ( A #  B  \/  0 #  u )  <->  ( A #  B  \/  0 #  0 ) ) )
6865, 67anbi12d 473 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  u  =  0 )  -> 
( ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( B  +  ( _i  x.  u
) ) )  /\  ( A #  B  \/  0 #  u
) )  <->  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) ) ) )
6960, 68rspcedv 2845 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  /\  ( A #  B  \/  0 #  u ) ) ) )
70 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  t  =  B )
7170oveq1d 5884 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
t  +  ( _i  x.  u ) )  =  ( B  +  ( _i  x.  u
) ) )
7271eqeq2d 2189 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  ( B  =  ( t  +  ( _i  x.  u ) )  <->  B  =  ( B  +  (
_i  x.  u )
) ) )
7372anbi2d 464 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) ) ) )
7470breq2d 4012 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  ( A #  t 
<->  A #  B ) )
7574orbi1d 791 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
( A #  t  \/  0 #  u
)  <->  ( A #  B  \/  0 #  u ) ) )
7673, 75anbi12d 473 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  (
( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) )  <->  ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( B  +  ( _i  x.  u
) ) )  /\  ( A #  B  \/  0 #  u
) ) ) )
7776rexbidv 2478 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  t  =  B )  ->  ( E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) )  <->  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  /\  ( A #  B  \/  0 #  u ) ) ) )
7852, 77rspcedv 2845 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( E. u  e.  RR  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  u ) ) )  /\  ( A #  B  \/  0 #  u ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) ) ) )
7969, 78syld 45 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) ) ) )
80 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
s  =  0 )
8180oveq2d 5885 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( _i  x.  s
)  =  ( _i  x.  0 ) )
8281oveq2d 5885 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( A  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  0 ) ) )
8382eqeq2d 2189 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( A  =  ( A  +  ( _i  x.  s ) )  <-> 
A  =  ( A  +  ( _i  x.  0 ) ) ) )
8483anbi1d 465 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( ( A  =  ( A  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) ) ) )
8580breq1d 4010 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( s #  u  <->  0 #  u ) )
8685orbi2d 790 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( ( A #  t  \/  s #  u )  <->  ( A #  t  \/  0 #  u ) ) )
8784, 86anbi12d 473 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) )  <->  ( ( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  0 #  u ) ) ) )
88872rexbidv 2502 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  s  =  0 )  -> 
( E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  0 #  u
) ) ) )
8960, 88rspcedv 2845 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  0
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  0 #  u
) )  ->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) ) ) )
90 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  r  =  A )
9190oveq1d 5884 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
r  +  ( _i  x.  s ) )  =  ( A  +  ( _i  x.  s
) ) )
9291eqeq2d 2189 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  ( A  =  ( r  +  ( _i  x.  s ) )  <->  A  =  ( A  +  (
_i  x.  s )
) ) )
9392anbi1d 465 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  <->  ( A  =  ( A  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) ) ) )
9490breq1d 4010 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
r #  t  <->  A #  t ) )
9594orbi1d 791 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
( r #  t  \/  s #  u
)  <->  ( A #  t  \/  s #  u ) ) )
9693, 95anbi12d 473 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  (
( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) ) ) )
9796rexbidv 2478 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  ( E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  (
r #  t  \/  s #  u ) )  <->  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( A #  t  \/  s #  u )
) ) )
98972rexbidv 2502 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B )  /\  r  =  A )  ->  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  (
( A  =  ( r  +  ( _i  x.  s ) )  /\  B  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) ) ) )
9947, 98rspcedv 2845 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( A  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( A #  t  \/  s #  u
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
10079, 89, 993syld 57 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
101123adant3 1017 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( A #  B 
<->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( A  =  ( r  +  ( _i  x.  s
) )  /\  B  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
102100, 101sylibrd 169 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  ( (
( A  =  ( A  +  ( _i  x.  0 ) )  /\  B  =  ( B  +  ( _i  x.  0 ) ) )  /\  ( A #  B  \/  0 #  0 ) )  ->  A #  B ) )
10359, 102mpd 13 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A #  B
)  ->  A #  B
)
1041033expia 1205 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  ->  A #  B
) )
10543, 104impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  A #  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4000  (class class class)co 5869   RRcr 7801   0cc0 7802   _ici 7804    + caddc 7805    x. cmul 7807   # creap 8521   # cap 8528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-ltxr 7987  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529
This theorem is referenced by:  reaplt  8535  apreim  8550  apirr  8552  apti  8569  recexap  8599  rerecclap  8676
  Copyright terms: Public domain W3C validator