ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcl Unicode version

Theorem aprcl 8432
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
aprcl  |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC ) )

Proof of Theorem aprcl
Dummy variables  r  s  t  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 3938 . . . 4  |-  ( A #  B  <->  <. A ,  B >.  e. #  )
2 eqeq1 2147 . . . . . . . . . 10  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( x  =  ( r  +  ( _i  x.  s ) )  <-> 
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) ) ) )
32anbi1d 461 . . . . . . . . 9  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) ) ) )
43anbi1d 461 . . . . . . . 8  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  ( (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
542rexbidv 2463 . . . . . . 7  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
652rexbidv 2463 . . . . . 6  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
7 eqeq1 2147 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( y  =  ( t  +  ( _i  x.  u ) )  <-> 
( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) ) )
87anbi2d 460 . . . . . . . . 9  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <-> 
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) ) )
98anbi1d 461 . . . . . . . 8  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  ( (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
1092rexbidv 2463 . . . . . . 7  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
11102rexbidv 2463 . . . . . 6  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
126, 11elopabi 6101 . . . . 5  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
13 df-ap 8368 . . . . 5  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
1412, 13eleq2s 2235 . . . 4  |-  ( <. A ,  B >.  e. # 
->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
151, 14sylbi 120 . . 3  |-  ( A #  B  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
16 simpl 108 . . . . . . 7  |-  ( ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  -> 
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1716reximi 2532 . . . . . 6  |-  ( E. u  e.  RR  (
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  ->  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1817reximi 2532 . . . . 5  |-  ( E. t  e.  RR  E. u  e.  RR  (
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1918reximi 2532 . . . 4  |-  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2019reximi 2532 . . 3  |-  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2115, 20syl 14 . 2  |-  ( A #  B  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2213relopabi 4673 . . . . . . . . . 10  |-  Rel #
2322brrelex1i 4590 . . . . . . . . 9  |-  ( A #  B  ->  A  e.  _V )
2423ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  A  e.  _V )
2522brrelex2i 4591 . . . . . . . . 9  |-  ( A #  B  ->  B  e.  _V )
2625ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  B  e.  _V )
27 op1stg 6056 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( 1st `  <. A ,  B >. )  =  A )
2824, 26, 27syl2anc 409 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  =  A )
29 simprl 521 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  =  ( r  +  ( _i  x.  s
) ) )
30 simprl 521 . . . . . . . . . . 11  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  r  e.  RR )
3130ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  r  e.  RR )
3231recnd 7818 . . . . . . . . 9  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  r  e.  CC )
33 ax-icn 7739 . . . . . . . . . . 11  |-  _i  e.  CC
3433a1i 9 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  _i  e.  CC )
35 simprr 522 . . . . . . . . . . . 12  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  s  e.  RR )
3635ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  s  e.  RR )
3736recnd 7818 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  s  e.  CC )
3834, 37mulcld 7810 . . . . . . . . 9  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( _i  x.  s )  e.  CC )
3932, 38addcld 7809 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( r  +  ( _i  x.  s ) )  e.  CC )
4029, 39eqeltrd 2217 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  e.  CC )
4128, 40eqeltrrd 2218 . . . . . 6  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  A  e.  CC )
42 op2ndg 6057 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( 2nd `  <. A ,  B >. )  =  B )
4324, 26, 42syl2anc 409 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  =  B )
44 simprr 522 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )
45 recn 7777 . . . . . . . . . . . 12  |-  ( t  e.  RR  ->  t  e.  CC )
4645adantr 274 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  t  e.  CC )
4733a1i 9 . . . . . . . . . . . 12  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  _i  e.  CC )
48 recn 7777 . . . . . . . . . . . . 13  |-  ( u  e.  RR  ->  u  e.  CC )
4948adantl 275 . . . . . . . . . . . 12  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  u  e.  CC )
5047, 49mulcld 7810 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  ( _i  x.  u
)  e.  CC )
5146, 50addcld 7809 . . . . . . . . . 10  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  ( t  +  ( _i  x.  u ) )  e.  CC )
5251adantl 275 . . . . . . . . 9  |-  ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( t  +  ( _i  x.  u ) )  e.  CC )
5352adantr 274 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( t  +  ( _i  x.  u ) )  e.  CC )
5444, 53eqeltrd 2217 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  e.  CC )
5543, 54eqeltrrd 2218 . . . . . 6  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  B  e.  CC )
5641, 55jca 304 . . . . 5  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5756ex 114 . . . 4  |-  ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
5857rexlimdvva 2560 . . 3  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
5958rexlimdvva 2560 . 2  |-  ( A #  B  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
6021, 59mpd 13 1  |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332    e. wcel 1481   E.wrex 2418   _Vcvv 2689   <.cop 3535   class class class wbr 3937   {copab 3996   ` cfv 5131  (class class class)co 5782   1stc1st 6044   2ndc2nd 6045   CCcc 7642   RRcr 7643   _ici 7646    + caddc 7647    x. cmul 7649   # creap 8360   # cap 8367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-resscn 7736  ax-icn 7739  ax-addcl 7740  ax-mulcl 7742
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139  df-1st 6046  df-2nd 6047  df-ap 8368
This theorem is referenced by:  apsscn  8433
  Copyright terms: Public domain W3C validator