ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcl Unicode version

Theorem aprcl 8633
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
aprcl  |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC ) )

Proof of Theorem aprcl
Dummy variables  r  s  t  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4019 . . . 4  |-  ( A #  B  <->  <. A ,  B >.  e. #  )
2 eqeq1 2196 . . . . . . . . . 10  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( x  =  ( r  +  ( _i  x.  s ) )  <-> 
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) ) ) )
32anbi1d 465 . . . . . . . . 9  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) ) ) )
43anbi1d 465 . . . . . . . 8  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  ( (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
542rexbidv 2515 . . . . . . 7  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
652rexbidv 2515 . . . . . 6  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
7 eqeq1 2196 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( y  =  ( t  +  ( _i  x.  u ) )  <-> 
( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) ) )
87anbi2d 464 . . . . . . . . 9  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <-> 
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) ) )
98anbi1d 465 . . . . . . . 8  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  ( (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
1092rexbidv 2515 . . . . . . 7  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
11102rexbidv 2515 . . . . . 6  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
126, 11elopabi 6220 . . . . 5  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
13 df-ap 8569 . . . . 5  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
1412, 13eleq2s 2284 . . . 4  |-  ( <. A ,  B >.  e. # 
->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
151, 14sylbi 121 . . 3  |-  ( A #  B  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
16 simpl 109 . . . . . . 7  |-  ( ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  -> 
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1716reximi 2587 . . . . . 6  |-  ( E. u  e.  RR  (
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  ->  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1817reximi 2587 . . . . 5  |-  ( E. t  e.  RR  E. u  e.  RR  (
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1918reximi 2587 . . . 4  |-  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2019reximi 2587 . . 3  |-  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2115, 20syl 14 . 2  |-  ( A #  B  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2213relopabi 4770 . . . . . . . . . 10  |-  Rel #
2322brrelex1i 4687 . . . . . . . . 9  |-  ( A #  B  ->  A  e.  _V )
2423ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  A  e.  _V )
2522brrelex2i 4688 . . . . . . . . 9  |-  ( A #  B  ->  B  e.  _V )
2625ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  B  e.  _V )
27 op1stg 6175 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( 1st `  <. A ,  B >. )  =  A )
2824, 26, 27syl2anc 411 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  =  A )
29 simprl 529 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  =  ( r  +  ( _i  x.  s
) ) )
30 simprl 529 . . . . . . . . . . 11  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  r  e.  RR )
3130ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  r  e.  RR )
3231recnd 8016 . . . . . . . . 9  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  r  e.  CC )
33 ax-icn 7936 . . . . . . . . . . 11  |-  _i  e.  CC
3433a1i 9 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  _i  e.  CC )
35 simprr 531 . . . . . . . . . . . 12  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  s  e.  RR )
3635ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  s  e.  RR )
3736recnd 8016 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  s  e.  CC )
3834, 37mulcld 8008 . . . . . . . . 9  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( _i  x.  s )  e.  CC )
3932, 38addcld 8007 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( r  +  ( _i  x.  s ) )  e.  CC )
4029, 39eqeltrd 2266 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  e.  CC )
4128, 40eqeltrrd 2267 . . . . . 6  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  A  e.  CC )
42 op2ndg 6176 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( 2nd `  <. A ,  B >. )  =  B )
4324, 26, 42syl2anc 411 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  =  B )
44 simprr 531 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )
45 recn 7974 . . . . . . . . . . . 12  |-  ( t  e.  RR  ->  t  e.  CC )
4645adantr 276 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  t  e.  CC )
4733a1i 9 . . . . . . . . . . . 12  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  _i  e.  CC )
48 recn 7974 . . . . . . . . . . . . 13  |-  ( u  e.  RR  ->  u  e.  CC )
4948adantl 277 . . . . . . . . . . . 12  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  u  e.  CC )
5047, 49mulcld 8008 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  ( _i  x.  u
)  e.  CC )
5146, 50addcld 8007 . . . . . . . . . 10  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  ( t  +  ( _i  x.  u ) )  e.  CC )
5251adantl 277 . . . . . . . . 9  |-  ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( t  +  ( _i  x.  u ) )  e.  CC )
5352adantr 276 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( t  +  ( _i  x.  u ) )  e.  CC )
5444, 53eqeltrd 2266 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  e.  CC )
5543, 54eqeltrrd 2267 . . . . . 6  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  B  e.  CC )
5641, 55jca 306 . . . . 5  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5756ex 115 . . . 4  |-  ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
5857rexlimdvva 2615 . . 3  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
5958rexlimdvva 2615 . 2  |-  ( A #  B  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
6021, 59mpd 13 1  |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2160   E.wrex 2469   _Vcvv 2752   <.cop 3610   class class class wbr 4018   {copab 4078   ` cfv 5235  (class class class)co 5896   1stc1st 6163   2ndc2nd 6164   CCcc 7839   RRcr 7840   _ici 7843    + caddc 7844    x. cmul 7846   # creap 8561   # cap 8568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-resscn 7933  ax-icn 7936  ax-addcl 7937  ax-mulcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fo 5241  df-fv 5243  df-1st 6165  df-2nd 6166  df-ap 8569
This theorem is referenced by:  apsscn  8634
  Copyright terms: Public domain W3C validator