| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aprcl | Unicode version | ||
| Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.) |
| Ref | Expression |
|---|---|
| aprcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4045 |
. . . 4
| |
| 2 | eqeq1 2212 |
. . . . . . . . . 10
| |
| 3 | 2 | anbi1d 465 |
. . . . . . . . 9
|
| 4 | 3 | anbi1d 465 |
. . . . . . . 8
|
| 5 | 4 | 2rexbidv 2531 |
. . . . . . 7
|
| 6 | 5 | 2rexbidv 2531 |
. . . . . 6
|
| 7 | eqeq1 2212 |
. . . . . . . . . 10
| |
| 8 | 7 | anbi2d 464 |
. . . . . . . . 9
|
| 9 | 8 | anbi1d 465 |
. . . . . . . 8
|
| 10 | 9 | 2rexbidv 2531 |
. . . . . . 7
|
| 11 | 10 | 2rexbidv 2531 |
. . . . . 6
|
| 12 | 6, 11 | elopabi 6281 |
. . . . 5
|
| 13 | df-ap 8655 |
. . . . 5
| |
| 14 | 12, 13 | eleq2s 2300 |
. . . 4
|
| 15 | 1, 14 | sylbi 121 |
. . 3
|
| 16 | simpl 109 |
. . . . . . 7
| |
| 17 | 16 | reximi 2603 |
. . . . . 6
|
| 18 | 17 | reximi 2603 |
. . . . 5
|
| 19 | 18 | reximi 2603 |
. . . 4
|
| 20 | 19 | reximi 2603 |
. . 3
|
| 21 | 15, 20 | syl 14 |
. 2
|
| 22 | 13 | relopabi 4803 |
. . . . . . . . . 10
|
| 23 | 22 | brrelex1i 4718 |
. . . . . . . . 9
|
| 24 | 23 | ad3antrrr 492 |
. . . . . . . 8
|
| 25 | 22 | brrelex2i 4719 |
. . . . . . . . 9
|
| 26 | 25 | ad3antrrr 492 |
. . . . . . . 8
|
| 27 | op1stg 6236 |
. . . . . . . 8
| |
| 28 | 24, 26, 27 | syl2anc 411 |
. . . . . . 7
|
| 29 | simprl 529 |
. . . . . . . 8
| |
| 30 | simprl 529 |
. . . . . . . . . . 11
| |
| 31 | 30 | ad2antrr 488 |
. . . . . . . . . 10
|
| 32 | 31 | recnd 8101 |
. . . . . . . . 9
|
| 33 | ax-icn 8020 |
. . . . . . . . . . 11
| |
| 34 | 33 | a1i 9 |
. . . . . . . . . 10
|
| 35 | simprr 531 |
. . . . . . . . . . . 12
| |
| 36 | 35 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 37 | 36 | recnd 8101 |
. . . . . . . . . 10
|
| 38 | 34, 37 | mulcld 8093 |
. . . . . . . . 9
|
| 39 | 32, 38 | addcld 8092 |
. . . . . . . 8
|
| 40 | 29, 39 | eqeltrd 2282 |
. . . . . . 7
|
| 41 | 28, 40 | eqeltrrd 2283 |
. . . . . 6
|
| 42 | op2ndg 6237 |
. . . . . . . 8
| |
| 43 | 24, 26, 42 | syl2anc 411 |
. . . . . . 7
|
| 44 | simprr 531 |
. . . . . . . 8
| |
| 45 | recn 8058 |
. . . . . . . . . . . 12
| |
| 46 | 45 | adantr 276 |
. . . . . . . . . . 11
|
| 47 | 33 | a1i 9 |
. . . . . . . . . . . 12
|
| 48 | recn 8058 |
. . . . . . . . . . . . 13
| |
| 49 | 48 | adantl 277 |
. . . . . . . . . . . 12
|
| 50 | 47, 49 | mulcld 8093 |
. . . . . . . . . . 11
|
| 51 | 46, 50 | addcld 8092 |
. . . . . . . . . 10
|
| 52 | 51 | adantl 277 |
. . . . . . . . 9
|
| 53 | 52 | adantr 276 |
. . . . . . . 8
|
| 54 | 44, 53 | eqeltrd 2282 |
. . . . . . 7
|
| 55 | 43, 54 | eqeltrrd 2283 |
. . . . . 6
|
| 56 | 41, 55 | jca 306 |
. . . . 5
|
| 57 | 56 | ex 115 |
. . . 4
|
| 58 | 57 | rexlimdvva 2631 |
. . 3
|
| 59 | 58 | rexlimdvva 2631 |
. 2
|
| 60 | 21, 59 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-resscn 8017 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-1st 6226 df-2nd 6227 df-ap 8655 |
| This theorem is referenced by: apsscn 8720 |
| Copyright terms: Public domain | W3C validator |