ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcl Unicode version

Theorem aprcl 8544
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
aprcl  |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC ) )

Proof of Theorem aprcl
Dummy variables  r  s  t  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 3983 . . . 4  |-  ( A #  B  <->  <. A ,  B >.  e. #  )
2 eqeq1 2172 . . . . . . . . . 10  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( x  =  ( r  +  ( _i  x.  s ) )  <-> 
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) ) ) )
32anbi1d 461 . . . . . . . . 9  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) ) ) )
43anbi1d 461 . . . . . . . 8  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  ( (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
542rexbidv 2491 . . . . . . 7  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
652rexbidv 2491 . . . . . 6  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
7 eqeq1 2172 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( y  =  ( t  +  ( _i  x.  u ) )  <-> 
( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) ) )
87anbi2d 460 . . . . . . . . 9  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <-> 
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) ) )
98anbi1d 461 . . . . . . . 8  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  ( (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
1092rexbidv 2491 . . . . . . 7  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
11102rexbidv 2491 . . . . . 6  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
126, 11elopabi 6163 . . . . 5  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
13 df-ap 8480 . . . . 5  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
1412, 13eleq2s 2261 . . . 4  |-  ( <. A ,  B >.  e. # 
->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
151, 14sylbi 120 . . 3  |-  ( A #  B  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
16 simpl 108 . . . . . . 7  |-  ( ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  -> 
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1716reximi 2563 . . . . . 6  |-  ( E. u  e.  RR  (
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  ->  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1817reximi 2563 . . . . 5  |-  ( E. t  e.  RR  E. u  e.  RR  (
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1918reximi 2563 . . . 4  |-  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2019reximi 2563 . . 3  |-  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2115, 20syl 14 . 2  |-  ( A #  B  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2213relopabi 4730 . . . . . . . . . 10  |-  Rel #
2322brrelex1i 4647 . . . . . . . . 9  |-  ( A #  B  ->  A  e.  _V )
2423ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  A  e.  _V )
2522brrelex2i 4648 . . . . . . . . 9  |-  ( A #  B  ->  B  e.  _V )
2625ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  B  e.  _V )
27 op1stg 6118 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( 1st `  <. A ,  B >. )  =  A )
2824, 26, 27syl2anc 409 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  =  A )
29 simprl 521 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  =  ( r  +  ( _i  x.  s
) ) )
30 simprl 521 . . . . . . . . . . 11  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  r  e.  RR )
3130ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  r  e.  RR )
3231recnd 7927 . . . . . . . . 9  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  r  e.  CC )
33 ax-icn 7848 . . . . . . . . . . 11  |-  _i  e.  CC
3433a1i 9 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  _i  e.  CC )
35 simprr 522 . . . . . . . . . . . 12  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  s  e.  RR )
3635ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  s  e.  RR )
3736recnd 7927 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  s  e.  CC )
3834, 37mulcld 7919 . . . . . . . . 9  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( _i  x.  s )  e.  CC )
3932, 38addcld 7918 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( r  +  ( _i  x.  s ) )  e.  CC )
4029, 39eqeltrd 2243 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  e.  CC )
4128, 40eqeltrrd 2244 . . . . . 6  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  A  e.  CC )
42 op2ndg 6119 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( 2nd `  <. A ,  B >. )  =  B )
4324, 26, 42syl2anc 409 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  =  B )
44 simprr 522 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )
45 recn 7886 . . . . . . . . . . . 12  |-  ( t  e.  RR  ->  t  e.  CC )
4645adantr 274 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  t  e.  CC )
4733a1i 9 . . . . . . . . . . . 12  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  _i  e.  CC )
48 recn 7886 . . . . . . . . . . . . 13  |-  ( u  e.  RR  ->  u  e.  CC )
4948adantl 275 . . . . . . . . . . . 12  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  u  e.  CC )
5047, 49mulcld 7919 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  ( _i  x.  u
)  e.  CC )
5146, 50addcld 7918 . . . . . . . . . 10  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  ( t  +  ( _i  x.  u ) )  e.  CC )
5251adantl 275 . . . . . . . . 9  |-  ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( t  +  ( _i  x.  u ) )  e.  CC )
5352adantr 274 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( t  +  ( _i  x.  u ) )  e.  CC )
5444, 53eqeltrd 2243 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  e.  CC )
5543, 54eqeltrrd 2244 . . . . . 6  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  B  e.  CC )
5641, 55jca 304 . . . . 5  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5756ex 114 . . . 4  |-  ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
5857rexlimdvva 2591 . . 3  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
5958rexlimdvva 2591 . 2  |-  ( A #  B  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
6021, 59mpd 13 1  |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   E.wrex 2445   _Vcvv 2726   <.cop 3579   class class class wbr 3982   {copab 4042   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   CCcc 7751   RRcr 7752   _ici 7755    + caddc 7756    x. cmul 7758   # creap 8472   # cap 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-resscn 7845  ax-icn 7848  ax-addcl 7849  ax-mulcl 7851
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-1st 6108  df-2nd 6109  df-ap 8480
This theorem is referenced by:  apsscn  8545
  Copyright terms: Public domain W3C validator