Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > aprcl | Unicode version |
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.) |
Ref | Expression |
---|---|
aprcl | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3983 | . . . 4 # # | |
2 | eqeq1 2172 | . . . . . . . . . 10 | |
3 | 2 | anbi1d 461 | . . . . . . . . 9 |
4 | 3 | anbi1d 461 | . . . . . . . 8 #ℝ #ℝ #ℝ #ℝ |
5 | 4 | 2rexbidv 2491 | . . . . . . 7 #ℝ #ℝ #ℝ #ℝ |
6 | 5 | 2rexbidv 2491 | . . . . . 6 #ℝ #ℝ #ℝ #ℝ |
7 | eqeq1 2172 | . . . . . . . . . 10 | |
8 | 7 | anbi2d 460 | . . . . . . . . 9 |
9 | 8 | anbi1d 461 | . . . . . . . 8 #ℝ #ℝ #ℝ #ℝ |
10 | 9 | 2rexbidv 2491 | . . . . . . 7 #ℝ #ℝ #ℝ #ℝ |
11 | 10 | 2rexbidv 2491 | . . . . . 6 #ℝ #ℝ #ℝ #ℝ |
12 | 6, 11 | elopabi 6163 | . . . . 5 #ℝ #ℝ #ℝ #ℝ |
13 | df-ap 8480 | . . . . 5 # #ℝ #ℝ | |
14 | 12, 13 | eleq2s 2261 | . . . 4 # #ℝ #ℝ |
15 | 1, 14 | sylbi 120 | . . 3 # #ℝ #ℝ |
16 | simpl 108 | . . . . . . 7 #ℝ #ℝ | |
17 | 16 | reximi 2563 | . . . . . 6 #ℝ #ℝ |
18 | 17 | reximi 2563 | . . . . 5 #ℝ #ℝ |
19 | 18 | reximi 2563 | . . . 4 #ℝ #ℝ |
20 | 19 | reximi 2563 | . . 3 #ℝ #ℝ |
21 | 15, 20 | syl 14 | . 2 # |
22 | 13 | relopabi 4730 | . . . . . . . . . 10 # |
23 | 22 | brrelex1i 4647 | . . . . . . . . 9 # |
24 | 23 | ad3antrrr 484 | . . . . . . . 8 # |
25 | 22 | brrelex2i 4648 | . . . . . . . . 9 # |
26 | 25 | ad3antrrr 484 | . . . . . . . 8 # |
27 | op1stg 6118 | . . . . . . . 8 | |
28 | 24, 26, 27 | syl2anc 409 | . . . . . . 7 # |
29 | simprl 521 | . . . . . . . 8 # | |
30 | simprl 521 | . . . . . . . . . . 11 # | |
31 | 30 | ad2antrr 480 | . . . . . . . . . 10 # |
32 | 31 | recnd 7927 | . . . . . . . . 9 # |
33 | ax-icn 7848 | . . . . . . . . . . 11 | |
34 | 33 | a1i 9 | . . . . . . . . . 10 # |
35 | simprr 522 | . . . . . . . . . . . 12 # | |
36 | 35 | ad2antrr 480 | . . . . . . . . . . 11 # |
37 | 36 | recnd 7927 | . . . . . . . . . 10 # |
38 | 34, 37 | mulcld 7919 | . . . . . . . . 9 # |
39 | 32, 38 | addcld 7918 | . . . . . . . 8 # |
40 | 29, 39 | eqeltrd 2243 | . . . . . . 7 # |
41 | 28, 40 | eqeltrrd 2244 | . . . . . 6 # |
42 | op2ndg 6119 | . . . . . . . 8 | |
43 | 24, 26, 42 | syl2anc 409 | . . . . . . 7 # |
44 | simprr 522 | . . . . . . . 8 # | |
45 | recn 7886 | . . . . . . . . . . . 12 | |
46 | 45 | adantr 274 | . . . . . . . . . . 11 |
47 | 33 | a1i 9 | . . . . . . . . . . . 12 |
48 | recn 7886 | . . . . . . . . . . . . 13 | |
49 | 48 | adantl 275 | . . . . . . . . . . . 12 |
50 | 47, 49 | mulcld 7919 | . . . . . . . . . . 11 |
51 | 46, 50 | addcld 7918 | . . . . . . . . . 10 |
52 | 51 | adantl 275 | . . . . . . . . 9 # |
53 | 52 | adantr 274 | . . . . . . . 8 # |
54 | 44, 53 | eqeltrd 2243 | . . . . . . 7 # |
55 | 43, 54 | eqeltrrd 2244 | . . . . . 6 # |
56 | 41, 55 | jca 304 | . . . . 5 # |
57 | 56 | ex 114 | . . . 4 # |
58 | 57 | rexlimdvva 2591 | . . 3 # |
59 | 58 | rexlimdvva 2591 | . 2 # |
60 | 21, 59 | mpd 13 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 wrex 2445 cvv 2726 cop 3579 class class class wbr 3982 copab 4042 cfv 5188 (class class class)co 5842 c1st 6106 c2nd 6107 cc 7751 cr 7752 ci 7755 caddc 7756 cmul 7758 #ℝ creap 8472 # cap 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-resscn 7845 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-1st 6108 df-2nd 6109 df-ap 8480 |
This theorem is referenced by: apsscn 8545 |
Copyright terms: Public domain | W3C validator |