ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcl Unicode version

Theorem aprcl 8665
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
aprcl  |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC ) )

Proof of Theorem aprcl
Dummy variables  r  s  t  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4030 . . . 4  |-  ( A #  B  <->  <. A ,  B >.  e. #  )
2 eqeq1 2200 . . . . . . . . . 10  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( x  =  ( r  +  ( _i  x.  s ) )  <-> 
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) ) ) )
32anbi1d 465 . . . . . . . . 9  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <->  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) ) ) )
43anbi1d 465 . . . . . . . 8  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  ( (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
542rexbidv 2519 . . . . . . 7  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
652rexbidv 2519 . . . . . 6  |-  ( x  =  ( 1st `  <. A ,  B >. )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
7 eqeq1 2200 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( y  =  ( t  +  ( _i  x.  u ) )  <-> 
( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) ) )
87anbi2d 464 . . . . . . . . 9  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  <-> 
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) ) )
98anbi1d 465 . . . . . . . 8  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  ( (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) ) )
1092rexbidv 2519 . . . . . . 7  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
11102rexbidv 2519 . . . . . 6  |-  ( y  =  ( 2nd `  <. A ,  B >. )  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  <->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) ) )
126, 11elopabi 6248 . . . . 5  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
13 df-ap 8601 . . . . 5  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
1412, 13eleq2s 2288 . . . 4  |-  ( <. A ,  B >.  e. # 
->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
151, 14sylbi 121 . . 3  |-  ( A #  B  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) )
16 simpl 109 . . . . . . 7  |-  ( ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  -> 
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1716reximi 2591 . . . . . 6  |-  ( E. u  e.  RR  (
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  ->  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1817reximi 2591 . . . . 5  |-  ( E. t  e.  RR  E. u  e.  RR  (
( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )  ->  E. t  e.  RR  E. u  e.  RR  (
( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
1918reximi 2591 . . . 4  |-  ( E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2019reximi 2591 . . 3  |-  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2115, 20syl 14 . 2  |-  ( A #  B  ->  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )
2213relopabi 4787 . . . . . . . . . 10  |-  Rel #
2322brrelex1i 4702 . . . . . . . . 9  |-  ( A #  B  ->  A  e.  _V )
2423ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  A  e.  _V )
2522brrelex2i 4703 . . . . . . . . 9  |-  ( A #  B  ->  B  e.  _V )
2625ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  B  e.  _V )
27 op1stg 6203 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( 1st `  <. A ,  B >. )  =  A )
2824, 26, 27syl2anc 411 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  =  A )
29 simprl 529 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  =  ( r  +  ( _i  x.  s
) ) )
30 simprl 529 . . . . . . . . . . 11  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  r  e.  RR )
3130ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  r  e.  RR )
3231recnd 8048 . . . . . . . . 9  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  r  e.  CC )
33 ax-icn 7967 . . . . . . . . . . 11  |-  _i  e.  CC
3433a1i 9 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  _i  e.  CC )
35 simprr 531 . . . . . . . . . . . 12  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  s  e.  RR )
3635ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  s  e.  RR )
3736recnd 8048 . . . . . . . . . 10  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  s  e.  CC )
3834, 37mulcld 8040 . . . . . . . . 9  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( _i  x.  s )  e.  CC )
3932, 38addcld 8039 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( r  +  ( _i  x.  s ) )  e.  CC )
4029, 39eqeltrd 2270 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 1st ` 
<. A ,  B >. )  e.  CC )
4128, 40eqeltrrd 2271 . . . . . 6  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  A  e.  CC )
42 op2ndg 6204 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( 2nd `  <. A ,  B >. )  =  B )
4324, 26, 42syl2anc 411 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  =  B )
44 simprr 531 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  =  ( t  +  ( _i  x.  u
) ) )
45 recn 8005 . . . . . . . . . . . 12  |-  ( t  e.  RR  ->  t  e.  CC )
4645adantr 276 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  t  e.  CC )
4733a1i 9 . . . . . . . . . . . 12  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  _i  e.  CC )
48 recn 8005 . . . . . . . . . . . . 13  |-  ( u  e.  RR  ->  u  e.  CC )
4948adantl 277 . . . . . . . . . . . 12  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  u  e.  CC )
5047, 49mulcld 8040 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  ( _i  x.  u
)  e.  CC )
5146, 50addcld 8039 . . . . . . . . . 10  |-  ( ( t  e.  RR  /\  u  e.  RR )  ->  ( t  +  ( _i  x.  u ) )  e.  CC )
5251adantl 277 . . . . . . . . 9  |-  ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( t  +  ( _i  x.  u ) )  e.  CC )
5352adantr 276 . . . . . . . 8  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( t  +  ( _i  x.  u ) )  e.  CC )
5444, 53eqeltrd 2270 . . . . . . 7  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( 2nd ` 
<. A ,  B >. )  e.  CC )
5543, 54eqeltrrd 2271 . . . . . 6  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  B  e.  CC )
5641, 55jca 306 . . . . 5  |-  ( ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  /\  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s
) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5756ex 115 . . . 4  |-  ( ( ( A #  B  /\  ( r  e.  RR  /\  s  e.  RR ) )  /\  ( t  e.  RR  /\  u  e.  RR ) )  -> 
( ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
5857rexlimdvva 2619 . . 3  |-  ( ( A #  B  /\  (
r  e.  RR  /\  s  e.  RR )
)  ->  ( E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
5958rexlimdvva 2619 . 2  |-  ( A #  B  ->  ( E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( 1st `  <. A ,  B >. )  =  ( r  +  ( _i  x.  s ) )  /\  ( 2nd `  <. A ,  B >. )  =  ( t  +  ( _i  x.  u ) ) )  ->  ( A  e.  CC  /\  B  e.  CC ) ) )
6021, 59mpd 13 1  |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   E.wrex 2473   _Vcvv 2760   <.cop 3621   class class class wbr 4029   {copab 4089   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   CCcc 7870   RRcr 7871   _ici 7874    + caddc 7875    x. cmul 7877   # creap 8593   # cap 8600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-resscn 7964  ax-icn 7967  ax-addcl 7968  ax-mulcl 7970
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193  df-2nd 6194  df-ap 8601
This theorem is referenced by:  apsscn  8666
  Copyright terms: Public domain W3C validator