Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > aprcl | Unicode version |
Description: Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.) |
Ref | Expression |
---|---|
aprcl | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . . . 4 # # | |
2 | eqeq1 2177 | . . . . . . . . . 10 | |
3 | 2 | anbi1d 462 | . . . . . . . . 9 |
4 | 3 | anbi1d 462 | . . . . . . . 8 #ℝ #ℝ #ℝ #ℝ |
5 | 4 | 2rexbidv 2495 | . . . . . . 7 #ℝ #ℝ #ℝ #ℝ |
6 | 5 | 2rexbidv 2495 | . . . . . 6 #ℝ #ℝ #ℝ #ℝ |
7 | eqeq1 2177 | . . . . . . . . . 10 | |
8 | 7 | anbi2d 461 | . . . . . . . . 9 |
9 | 8 | anbi1d 462 | . . . . . . . 8 #ℝ #ℝ #ℝ #ℝ |
10 | 9 | 2rexbidv 2495 | . . . . . . 7 #ℝ #ℝ #ℝ #ℝ |
11 | 10 | 2rexbidv 2495 | . . . . . 6 #ℝ #ℝ #ℝ #ℝ |
12 | 6, 11 | elopabi 6174 | . . . . 5 #ℝ #ℝ #ℝ #ℝ |
13 | df-ap 8501 | . . . . 5 # #ℝ #ℝ | |
14 | 12, 13 | eleq2s 2265 | . . . 4 # #ℝ #ℝ |
15 | 1, 14 | sylbi 120 | . . 3 # #ℝ #ℝ |
16 | simpl 108 | . . . . . . 7 #ℝ #ℝ | |
17 | 16 | reximi 2567 | . . . . . 6 #ℝ #ℝ |
18 | 17 | reximi 2567 | . . . . 5 #ℝ #ℝ |
19 | 18 | reximi 2567 | . . . 4 #ℝ #ℝ |
20 | 19 | reximi 2567 | . . 3 #ℝ #ℝ |
21 | 15, 20 | syl 14 | . 2 # |
22 | 13 | relopabi 4737 | . . . . . . . . . 10 # |
23 | 22 | brrelex1i 4654 | . . . . . . . . 9 # |
24 | 23 | ad3antrrr 489 | . . . . . . . 8 # |
25 | 22 | brrelex2i 4655 | . . . . . . . . 9 # |
26 | 25 | ad3antrrr 489 | . . . . . . . 8 # |
27 | op1stg 6129 | . . . . . . . 8 | |
28 | 24, 26, 27 | syl2anc 409 | . . . . . . 7 # |
29 | simprl 526 | . . . . . . . 8 # | |
30 | simprl 526 | . . . . . . . . . . 11 # | |
31 | 30 | ad2antrr 485 | . . . . . . . . . 10 # |
32 | 31 | recnd 7948 | . . . . . . . . 9 # |
33 | ax-icn 7869 | . . . . . . . . . . 11 | |
34 | 33 | a1i 9 | . . . . . . . . . 10 # |
35 | simprr 527 | . . . . . . . . . . . 12 # | |
36 | 35 | ad2antrr 485 | . . . . . . . . . . 11 # |
37 | 36 | recnd 7948 | . . . . . . . . . 10 # |
38 | 34, 37 | mulcld 7940 | . . . . . . . . 9 # |
39 | 32, 38 | addcld 7939 | . . . . . . . 8 # |
40 | 29, 39 | eqeltrd 2247 | . . . . . . 7 # |
41 | 28, 40 | eqeltrrd 2248 | . . . . . 6 # |
42 | op2ndg 6130 | . . . . . . . 8 | |
43 | 24, 26, 42 | syl2anc 409 | . . . . . . 7 # |
44 | simprr 527 | . . . . . . . 8 # | |
45 | recn 7907 | . . . . . . . . . . . 12 | |
46 | 45 | adantr 274 | . . . . . . . . . . 11 |
47 | 33 | a1i 9 | . . . . . . . . . . . 12 |
48 | recn 7907 | . . . . . . . . . . . . 13 | |
49 | 48 | adantl 275 | . . . . . . . . . . . 12 |
50 | 47, 49 | mulcld 7940 | . . . . . . . . . . 11 |
51 | 46, 50 | addcld 7939 | . . . . . . . . . 10 |
52 | 51 | adantl 275 | . . . . . . . . 9 # |
53 | 52 | adantr 274 | . . . . . . . 8 # |
54 | 44, 53 | eqeltrd 2247 | . . . . . . 7 # |
55 | 43, 54 | eqeltrrd 2248 | . . . . . 6 # |
56 | 41, 55 | jca 304 | . . . . 5 # |
57 | 56 | ex 114 | . . . 4 # |
58 | 57 | rexlimdvva 2595 | . . 3 # |
59 | 58 | rexlimdvva 2595 | . 2 # |
60 | 21, 59 | mpd 13 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wceq 1348 wcel 2141 wrex 2449 cvv 2730 cop 3586 class class class wbr 3989 copab 4049 cfv 5198 (class class class)co 5853 c1st 6117 c2nd 6118 cc 7772 cr 7773 ci 7776 caddc 7777 cmul 7779 #ℝ creap 8493 # cap 8500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-resscn 7866 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-1st 6119 df-2nd 6120 df-ap 8501 |
This theorem is referenced by: apsscn 8566 |
Copyright terms: Public domain | W3C validator |