ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-qs Unicode version

Definition df-qs 6507
Description: Define quotient set.  R is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-qs  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
Distinct variable groups:    x, y, A   
x, R, y

Detailed syntax breakdown of Definition df-qs
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2cqs 6500 . 2  class  ( A /. R )
4 vy . . . . . 6  setvar  y
54cv 1342 . . . . 5  class  y
6 vx . . . . . . 7  setvar  x
76cv 1342 . . . . . 6  class  x
87, 2cec 6499 . . . . 5  class  [ x ] R
95, 8wceq 1343 . . . 4  wff  y  =  [ x ] R
109, 6, 1wrex 2445 . . 3  wff  E. x  e.  A  y  =  [ x ] R
1110, 4cab 2151 . 2  class  { y  |  E. x  e.  A  y  =  [
x ] R }
123, 11wceq 1343 1  wff  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
Colors of variables: wff set class
This definition is referenced by:  qseq1  6549  qseq2  6550  elqsg  6551  qsexg  6557  uniqs  6559  snec  6562  qsinxp  6577  qliftf  6586
  Copyright terms: Public domain W3C validator