ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexr Unicode version

Theorem ecexr 6506
Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr  |-  ( A  e.  [ B ] R  ->  B  e.  _V )

Proof of Theorem ecexr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elimag 4950 . . . . 5  |-  ( A  e.  ( R " { B } )  -> 
( A  e.  ( R " { B } )  <->  E. x  e.  { B } x R A ) )
21ibi 175 . . . 4  |-  ( A  e.  ( R " { B } )  ->  E. x  e.  { B } x R A )
3 df-ec 6503 . . . 4  |-  [ B ] R  =  ( R " { B }
)
42, 3eleq2s 2261 . . 3  |-  ( A  e.  [ B ] R  ->  E. x  e.  { B } x R A )
5 df-rex 2450 . . . 4  |-  ( E. x  e.  { B } x R A  <->  E. x ( x  e. 
{ B }  /\  x R A ) )
6 simpl 108 . . . . . 6  |-  ( ( x  e.  { B }  /\  x R A )  ->  x  e.  { B } )
7 velsn 3593 . . . . . 6  |-  ( x  e.  { B }  <->  x  =  B )
86, 7sylib 121 . . . . 5  |-  ( ( x  e.  { B }  /\  x R A )  ->  x  =  B )
98eximi 1588 . . . 4  |-  ( E. x ( x  e. 
{ B }  /\  x R A )  ->  E. x  x  =  B )
105, 9sylbi 120 . . 3  |-  ( E. x  e.  { B } x R A  ->  E. x  x  =  B )
114, 10syl 14 . 2  |-  ( A  e.  [ B ] R  ->  E. x  x  =  B )
12 isset 2732 . 2  |-  ( B  e.  _V  <->  E. x  x  =  B )
1311, 12sylibr 133 1  |-  ( A  e.  [ B ] R  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   _Vcvv 2726   {csn 3576   class class class wbr 3982   "cima 4607   [cec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503
This theorem is referenced by:  relelec  6541  ecdmn0m  6543
  Copyright terms: Public domain W3C validator