ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexr Unicode version

Theorem ecexr 6518
Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr  |-  ( A  e.  [ B ] R  ->  B  e.  _V )

Proof of Theorem ecexr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elimag 4957 . . . . 5  |-  ( A  e.  ( R " { B } )  -> 
( A  e.  ( R " { B } )  <->  E. x  e.  { B } x R A ) )
21ibi 175 . . . 4  |-  ( A  e.  ( R " { B } )  ->  E. x  e.  { B } x R A )
3 df-ec 6515 . . . 4  |-  [ B ] R  =  ( R " { B }
)
42, 3eleq2s 2265 . . 3  |-  ( A  e.  [ B ] R  ->  E. x  e.  { B } x R A )
5 df-rex 2454 . . . 4  |-  ( E. x  e.  { B } x R A  <->  E. x ( x  e. 
{ B }  /\  x R A ) )
6 simpl 108 . . . . . 6  |-  ( ( x  e.  { B }  /\  x R A )  ->  x  e.  { B } )
7 velsn 3600 . . . . . 6  |-  ( x  e.  { B }  <->  x  =  B )
86, 7sylib 121 . . . . 5  |-  ( ( x  e.  { B }  /\  x R A )  ->  x  =  B )
98eximi 1593 . . . 4  |-  ( E. x ( x  e. 
{ B }  /\  x R A )  ->  E. x  x  =  B )
105, 9sylbi 120 . . 3  |-  ( E. x  e.  { B } x R A  ->  E. x  x  =  B )
114, 10syl 14 . 2  |-  ( A  e.  [ B ] R  ->  E. x  x  =  B )
12 isset 2736 . 2  |-  ( B  e.  _V  <->  E. x  x  =  B )
1311, 12sylibr 133 1  |-  ( A  e.  [ B ] R  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   _Vcvv 2730   {csn 3583   class class class wbr 3989   "cima 4614   [cec 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-ec 6515
This theorem is referenced by:  relelec  6553  ecdmn0m  6555
  Copyright terms: Public domain W3C validator