| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecexr | Unicode version | ||
| Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecexr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag 5034 |
. . . . 5
| |
| 2 | 1 | ibi 176 |
. . . 4
|
| 3 | df-ec 6634 |
. . . 4
| |
| 4 | 2, 3 | eleq2s 2301 |
. . 3
|
| 5 | df-rex 2491 |
. . . 4
| |
| 6 | simpl 109 |
. . . . . 6
| |
| 7 | velsn 3654 |
. . . . . 6
| |
| 8 | 6, 7 | sylib 122 |
. . . . 5
|
| 9 | 8 | eximi 1624 |
. . . 4
|
| 10 | 5, 9 | sylbi 121 |
. . 3
|
| 11 | 4, 10 | syl 14 |
. 2
|
| 12 | isset 2780 |
. 2
| |
| 13 | 11, 12 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-xp 4688 df-cnv 4690 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-ec 6634 |
| This theorem is referenced by: relelec 6674 ecdmn0m 6676 |
| Copyright terms: Public domain | W3C validator |