ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexr Unicode version

Theorem ecexr 6427
Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr  |-  ( A  e.  [ B ] R  ->  B  e.  _V )

Proof of Theorem ecexr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elimag 4880 . . . . 5  |-  ( A  e.  ( R " { B } )  -> 
( A  e.  ( R " { B } )  <->  E. x  e.  { B } x R A ) )
21ibi 175 . . . 4  |-  ( A  e.  ( R " { B } )  ->  E. x  e.  { B } x R A )
3 df-ec 6424 . . . 4  |-  [ B ] R  =  ( R " { B }
)
42, 3eleq2s 2232 . . 3  |-  ( A  e.  [ B ] R  ->  E. x  e.  { B } x R A )
5 df-rex 2420 . . . 4  |-  ( E. x  e.  { B } x R A  <->  E. x ( x  e. 
{ B }  /\  x R A ) )
6 simpl 108 . . . . . 6  |-  ( ( x  e.  { B }  /\  x R A )  ->  x  e.  { B } )
7 velsn 3539 . . . . . 6  |-  ( x  e.  { B }  <->  x  =  B )
86, 7sylib 121 . . . . 5  |-  ( ( x  e.  { B }  /\  x R A )  ->  x  =  B )
98eximi 1579 . . . 4  |-  ( E. x ( x  e. 
{ B }  /\  x R A )  ->  E. x  x  =  B )
105, 9sylbi 120 . . 3  |-  ( E. x  e.  { B } x R A  ->  E. x  x  =  B )
114, 10syl 14 . 2  |-  ( A  e.  [ B ] R  ->  E. x  x  =  B )
12 isset 2687 . 2  |-  ( B  e.  _V  <->  E. x  x  =  B )
1311, 12sylibr 133 1  |-  ( A  e.  [ B ] R  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2415   _Vcvv 2681   {csn 3522   class class class wbr 3924   "cima 4537   [cec 6420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-cnv 4542  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-ec 6424
This theorem is referenced by:  relelec  6462  ecdmn0m  6464
  Copyright terms: Public domain W3C validator