Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qseq2 | Unicode version |
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
qseq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq2 6538 | . . . . 5 | |
2 | 1 | eqeq2d 2177 | . . . 4 |
3 | 2 | rexbidv 2467 | . . 3 |
4 | 3 | abbidv 2284 | . 2 |
5 | df-qs 6507 | . 2 | |
6 | df-qs 6507 | . 2 | |
7 | 4, 5, 6 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cab 2151 wrex 2445 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-ec 6503 df-qs 6507 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |