ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq2 Unicode version

Theorem qseq2 6562
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq2  |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B
) )

Proof of Theorem qseq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eceq2 6550 . . . . 5  |-  ( A  =  B  ->  [ x ] A  =  [
x ] B )
21eqeq2d 2182 . . . 4  |-  ( A  =  B  ->  (
y  =  [ x ] A  <->  y  =  [
x ] B ) )
32rexbidv 2471 . . 3  |-  ( A  =  B  ->  ( E. x  e.  C  y  =  [ x ] A  <->  E. x  e.  C  y  =  [ x ] B ) )
43abbidv 2288 . 2  |-  ( A  =  B  ->  { y  |  E. x  e.  C  y  =  [
x ] A }  =  { y  |  E. x  e.  C  y  =  [ x ] B } )
5 df-qs 6519 . 2  |-  ( C /. A )  =  { y  |  E. x  e.  C  y  =  [ x ] A }
6 df-qs 6519 . 2  |-  ( C /. B )  =  { y  |  E. x  e.  C  y  =  [ x ] B }
74, 5, 63eqtr4g 2228 1  |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   {cab 2156   E.wrex 2449   [cec 6511   /.cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-ec 6515  df-qs 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator