ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq2 Unicode version

Theorem qseq2 6602
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq2  |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B
) )

Proof of Theorem qseq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eceq2 6590 . . . . 5  |-  ( A  =  B  ->  [ x ] A  =  [
x ] B )
21eqeq2d 2201 . . . 4  |-  ( A  =  B  ->  (
y  =  [ x ] A  <->  y  =  [
x ] B ) )
32rexbidv 2491 . . 3  |-  ( A  =  B  ->  ( E. x  e.  C  y  =  [ x ] A  <->  E. x  e.  C  y  =  [ x ] B ) )
43abbidv 2307 . 2  |-  ( A  =  B  ->  { y  |  E. x  e.  C  y  =  [
x ] A }  =  { y  |  E. x  e.  C  y  =  [ x ] B } )
5 df-qs 6559 . 2  |-  ( C /. A )  =  { y  |  E. x  e.  C  y  =  [ x ] A }
6 df-qs 6559 . 2  |-  ( C /. B )  =  { y  |  E. x  e.  C  y  =  [ x ] B }
74, 5, 63eqtr4g 2247 1  |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   {cab 2175   E.wrex 2469   [cec 6551   /.cqs 6552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-cnv 4649  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-ec 6555  df-qs 6559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator