ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq2 Unicode version

Theorem qseq2 6643
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq2  |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B
) )

Proof of Theorem qseq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eceq2 6629 . . . . 5  |-  ( A  =  B  ->  [ x ] A  =  [
x ] B )
21eqeq2d 2208 . . . 4  |-  ( A  =  B  ->  (
y  =  [ x ] A  <->  y  =  [
x ] B ) )
32rexbidv 2498 . . 3  |-  ( A  =  B  ->  ( E. x  e.  C  y  =  [ x ] A  <->  E. x  e.  C  y  =  [ x ] B ) )
43abbidv 2314 . 2  |-  ( A  =  B  ->  { y  |  E. x  e.  C  y  =  [
x ] A }  =  { y  |  E. x  e.  C  y  =  [ x ] B } )
5 df-qs 6598 . 2  |-  ( C /. A )  =  { y  |  E. x  e.  C  y  =  [ x ] A }
6 df-qs 6598 . 2  |-  ( C /. B )  =  { y  |  E. x  e.  C  y  =  [ x ] B }
74, 5, 63eqtr4g 2254 1  |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   {cab 2182   E.wrex 2476   [cec 6590   /.cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594  df-qs 6598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator