ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsg Unicode version

Theorem elqsg 6674
Description: Closed form of elqs 6675. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Distinct variable groups:    x, A    x, B    x, R
Allowed substitution hint:    V( x)

Proof of Theorem elqsg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2212 . . 3  |-  ( y  =  B  ->  (
y  =  [ x ] R  <->  B  =  [
x ] R ) )
21rexbidv 2507 . 2  |-  ( y  =  B  ->  ( E. x  e.  A  y  =  [ x ] R  <->  E. x  e.  A  B  =  [ x ] R ) )
3 df-qs 6628 . 2  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
42, 3elab2g 2920 1  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   [cec 6620   /.cqs 6621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-qs 6628
This theorem is referenced by:  elqs  6675  elqsi  6676  ecelqsg  6677  quselbasg  13599
  Copyright terms: Public domain W3C validator