Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsg Unicode version

Theorem elqsg 6445
 Description: Closed form of elqs 6446. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem elqsg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2122 . . 3
21rexbidv 2413 . 2
3 df-qs 6401 . 2
42, 3elab2g 2802 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1314   wcel 1463  wrex 2392  cec 6393  cqs 6394 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-rex 2397  df-v 2660  df-qs 6401 This theorem is referenced by:  elqs  6446  elqsi  6447  ecelqsg  6448
 Copyright terms: Public domain W3C validator