ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsg Unicode version

Theorem elqsg 6340
Description: Closed form of elqs 6341. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Distinct variable groups:    x, A    x, B    x, R
Allowed substitution hint:    V( x)

Proof of Theorem elqsg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2094 . . 3  |-  ( y  =  B  ->  (
y  =  [ x ] R  <->  B  =  [
x ] R ) )
21rexbidv 2381 . 2  |-  ( y  =  B  ->  ( E. x  e.  A  y  =  [ x ] R  <->  E. x  e.  A  B  =  [ x ] R ) )
3 df-qs 6296 . 2  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
42, 3elab2g 2762 1  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289    e. wcel 1438   E.wrex 2360   [cec 6288   /.cqs 6289
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-qs 6296
This theorem is referenced by:  elqs  6341  elqsi  6342  ecelqsg  6343
  Copyright terms: Public domain W3C validator