ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsg Unicode version

Theorem elqsg 6644
Description: Closed form of elqs 6645. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Distinct variable groups:    x, A    x, B    x, R
Allowed substitution hint:    V( x)

Proof of Theorem elqsg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2203 . . 3  |-  ( y  =  B  ->  (
y  =  [ x ] R  <->  B  =  [
x ] R ) )
21rexbidv 2498 . 2  |-  ( y  =  B  ->  ( E. x  e.  A  y  =  [ x ] R  <->  E. x  e.  A  B  =  [ x ] R ) )
3 df-qs 6598 . 2  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
42, 3elab2g 2911 1  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   [cec 6590   /.cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-qs 6598
This theorem is referenced by:  elqs  6645  elqsi  6646  ecelqsg  6647  quselbasg  13360
  Copyright terms: Public domain W3C validator