ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftf Unicode version

Theorem qliftf 6765
Description: The domain and codomain of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftf  |-  ( ph  ->  ( Fun  F  <->  F :
( X /. R
) --> Y ) )
Distinct variable groups:    ph, x    x, R    x, X    x, Y
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . . 4  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . . 4  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6758 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
61, 5, 2fliftf 5922 . 2  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  [ x ] R
) --> Y ) )
7 df-qs 6684 . . . . 5  |-  ( X /. R )  =  { y  |  E. x  e.  X  y  =  [ x ] R }
8 eqid 2229 . . . . . 6  |-  ( x  e.  X  |->  [ x ] R )  =  ( x  e.  X  |->  [ x ] R )
98rnmpt 4971 . . . . 5  |-  ran  (
x  e.  X  |->  [ x ] R )  =  { y  |  E. x  e.  X  y  =  [ x ] R }
107, 9eqtr4i 2253 . . . 4  |-  ( X /. R )  =  ran  ( x  e.  X  |->  [ x ] R )
1110a1i 9 . . 3  |-  ( ph  ->  ( X /. R
)  =  ran  (
x  e.  X  |->  [ x ] R ) )
1211feq2d 5460 . 2  |-  ( ph  ->  ( F : ( X /. R ) --> Y  <->  F : ran  (
x  e.  X  |->  [ x ] R ) --> Y ) )
136, 12bitr4d 191 1  |-  ( ph  ->  ( Fun  F  <->  F :
( X /. R
) --> Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799   <.cop 3669    |-> cmpt 4144   ran crn 4719   Fun wfun 5311   -->wf 5313    Er wer 6675   [cec 6676   /.cqs 6677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-er 6678  df-ec 6680  df-qs 6684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator