ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftf Unicode version

Theorem qliftf 6586
Description: The domain and range of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftf  |-  ( ph  ->  ( Fun  F  <->  F :
( X /. R
) --> Y ) )
Distinct variable groups:    ph, x    x, R    x, X    x, Y
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . . 4  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . . 4  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6579 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
61, 5, 2fliftf 5767 . 2  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  [ x ] R
) --> Y ) )
7 df-qs 6507 . . . . 5  |-  ( X /. R )  =  { y  |  E. x  e.  X  y  =  [ x ] R }
8 eqid 2165 . . . . . 6  |-  ( x  e.  X  |->  [ x ] R )  =  ( x  e.  X  |->  [ x ] R )
98rnmpt 4852 . . . . 5  |-  ran  (
x  e.  X  |->  [ x ] R )  =  { y  |  E. x  e.  X  y  =  [ x ] R }
107, 9eqtr4i 2189 . . . 4  |-  ( X /. R )  =  ran  ( x  e.  X  |->  [ x ] R )
1110a1i 9 . . 3  |-  ( ph  ->  ( X /. R
)  =  ran  (
x  e.  X  |->  [ x ] R ) )
1211feq2d 5325 . 2  |-  ( ph  ->  ( F : ( X /. R ) --> Y  <->  F : ran  (
x  e.  X  |->  [ x ] R ) --> Y ) )
136, 12bitr4d 190 1  |-  ( ph  ->  ( Fun  F  <->  F :
( X /. R
) --> Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   _Vcvv 2726   <.cop 3579    |-> cmpt 4043   ran crn 4605   Fun wfun 5182   -->wf 5184    Er wer 6498   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-er 6501  df-ec 6503  df-qs 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator