ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq1 Unicode version

Theorem qseq1 6642
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq1  |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C
) )

Proof of Theorem qseq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2694 . . 3  |-  ( A  =  B  ->  ( E. x  e.  A  y  =  [ x ] C  <->  E. x  e.  B  y  =  [ x ] C ) )
21abbidv 2314 . 2  |-  ( A  =  B  ->  { y  |  E. x  e.  A  y  =  [
x ] C }  =  { y  |  E. x  e.  B  y  =  [ x ] C } )
3 df-qs 6598 . 2  |-  ( A /. C )  =  { y  |  E. x  e.  A  y  =  [ x ] C }
4 df-qs 6598 . 2  |-  ( B /. C )  =  { y  |  E. x  e.  B  y  =  [ x ] C }
52, 3, 43eqtr4g 2254 1  |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   {cab 2182   E.wrex 2476   [cec 6590   /.cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-qs 6598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator