ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq1 Unicode version

Theorem qseq1 6585
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq1  |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C
) )

Proof of Theorem qseq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2674 . . 3  |-  ( A  =  B  ->  ( E. x  e.  A  y  =  [ x ] C  <->  E. x  e.  B  y  =  [ x ] C ) )
21abbidv 2295 . 2  |-  ( A  =  B  ->  { y  |  E. x  e.  A  y  =  [
x ] C }  =  { y  |  E. x  e.  B  y  =  [ x ] C } )
3 df-qs 6543 . 2  |-  ( A /. C )  =  { y  |  E. x  e.  A  y  =  [ x ] C }
4 df-qs 6543 . 2  |-  ( B /. C )  =  { y  |  E. x  e.  B  y  =  [ x ] C }
52, 3, 43eqtr4g 2235 1  |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   {cab 2163   E.wrex 2456   [cec 6535   /.cqs 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-qs 6543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator