ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq1 Unicode version

Theorem qseq1 6549
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq1  |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C
) )

Proof of Theorem qseq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2662 . . 3  |-  ( A  =  B  ->  ( E. x  e.  A  y  =  [ x ] C  <->  E. x  e.  B  y  =  [ x ] C ) )
21abbidv 2284 . 2  |-  ( A  =  B  ->  { y  |  E. x  e.  A  y  =  [
x ] C }  =  { y  |  E. x  e.  B  y  =  [ x ] C } )
3 df-qs 6507 . 2  |-  ( A /. C )  =  { y  |  E. x  e.  A  y  =  [ x ] C }
4 df-qs 6507 . 2  |-  ( B /. C )  =  { y  |  E. x  e.  B  y  =  [ x ] C }
52, 3, 43eqtr4g 2224 1  |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   {cab 2151   E.wrex 2445   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-qs 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator