Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq1 Unicode version

Theorem qseq1 6525
 Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq1

Proof of Theorem qseq1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2653 . . 3
21abbidv 2275 . 2
3 df-qs 6483 . 2
4 df-qs 6483 . 2
52, 3, 43eqtr4g 2215 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1335  cab 2143  wrex 2436  cec 6475  cqs 6476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-qs 6483 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator