ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snec Unicode version

Theorem snec 6664
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
snec.1  |-  A  e. 
_V
Assertion
Ref Expression
snec  |-  { [ A ] R }  =  ( { A } /. R )

Proof of Theorem snec
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snec.1 . . . 4  |-  A  e. 
_V
2 eceq1 6636 . . . . 5  |-  ( x  =  A  ->  [ x ] R  =  [ A ] R )
32eqeq2d 2208 . . . 4  |-  ( x  =  A  ->  (
y  =  [ x ] R  <->  y  =  [ A ] R ) )
41, 3rexsn 3667 . . 3  |-  ( E. x  e.  { A } y  =  [
x ] R  <->  y  =  [ A ] R )
54abbii 2312 . 2  |-  { y  |  E. x  e. 
{ A } y  =  [ x ] R }  =  {
y  |  y  =  [ A ] R }
6 df-qs 6607 . 2  |-  ( { A } /. R
)  =  { y  |  E. x  e. 
{ A } y  =  [ x ] R }
7 df-sn 3629 . 2  |-  { [ A ] R }  =  { y  |  y  =  [ A ] R }
85, 6, 73eqtr4ri 2228 1  |-  { [ A ] R }  =  ( { A } /. R )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763   {csn 3623   [cec 6599   /.cqs 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-ec 6603  df-qs 6607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator