ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snec Unicode version

Theorem snec 6586
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
snec.1  |-  A  e. 
_V
Assertion
Ref Expression
snec  |-  { [ A ] R }  =  ( { A } /. R )

Proof of Theorem snec
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snec.1 . . . 4  |-  A  e. 
_V
2 eceq1 6560 . . . . 5  |-  ( x  =  A  ->  [ x ] R  =  [ A ] R )
32eqeq2d 2187 . . . 4  |-  ( x  =  A  ->  (
y  =  [ x ] R  <->  y  =  [ A ] R ) )
41, 3rexsn 3633 . . 3  |-  ( E. x  e.  { A } y  =  [
x ] R  <->  y  =  [ A ] R )
54abbii 2291 . 2  |-  { y  |  E. x  e. 
{ A } y  =  [ x ] R }  =  {
y  |  y  =  [ A ] R }
6 df-qs 6531 . 2  |-  ( { A } /. R
)  =  { y  |  E. x  e. 
{ A } y  =  [ x ] R }
7 df-sn 3595 . 2  |-  { [ A ] R }  =  { y  |  y  =  [ A ] R }
85, 6, 73eqtr4ri 2207 1  |-  { [ A ] R }  =  ( { A } /. R )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2146   {cab 2161   E.wrex 2454   _Vcvv 2735   {csn 3589   [cec 6523   /.cqs 6524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-ec 6527  df-qs 6531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator