| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snec | Unicode version | ||
| Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| snec.1 |
|
| Ref | Expression |
|---|---|
| snec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snec.1 |
. . . 4
| |
| 2 | eceq1 6636 |
. . . . 5
| |
| 3 | 2 | eqeq2d 2208 |
. . . 4
|
| 4 | 1, 3 | rexsn 3667 |
. . 3
|
| 5 | 4 | abbii 2312 |
. 2
|
| 6 | df-qs 6607 |
. 2
| |
| 7 | df-sn 3629 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4ri 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |