ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snec Unicode version

Theorem snec 6652
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
snec.1  |-  A  e. 
_V
Assertion
Ref Expression
snec  |-  { [ A ] R }  =  ( { A } /. R )

Proof of Theorem snec
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snec.1 . . . 4  |-  A  e. 
_V
2 eceq1 6624 . . . . 5  |-  ( x  =  A  ->  [ x ] R  =  [ A ] R )
32eqeq2d 2205 . . . 4  |-  ( x  =  A  ->  (
y  =  [ x ] R  <->  y  =  [ A ] R ) )
41, 3rexsn 3663 . . 3  |-  ( E. x  e.  { A } y  =  [
x ] R  <->  y  =  [ A ] R )
54abbii 2309 . 2  |-  { y  |  E. x  e. 
{ A } y  =  [ x ] R }  =  {
y  |  y  =  [ A ] R }
6 df-qs 6595 . 2  |-  ( { A } /. R
)  =  { y  |  E. x  e. 
{ A } y  =  [ x ] R }
7 df-sn 3625 . 2  |-  { [ A ] R }  =  { y  |  y  =  [ A ] R }
85, 6, 73eqtr4ri 2225 1  |-  { [ A ] R }  =  ( { A } /. R )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   _Vcvv 2760   {csn 3619   [cec 6587   /.cqs 6588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-ec 6591  df-qs 6595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator