ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snec Unicode version

Theorem snec 6562
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
snec.1  |-  A  e. 
_V
Assertion
Ref Expression
snec  |-  { [ A ] R }  =  ( { A } /. R )

Proof of Theorem snec
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snec.1 . . . 4  |-  A  e. 
_V
2 eceq1 6536 . . . . 5  |-  ( x  =  A  ->  [ x ] R  =  [ A ] R )
32eqeq2d 2177 . . . 4  |-  ( x  =  A  ->  (
y  =  [ x ] R  <->  y  =  [ A ] R ) )
41, 3rexsn 3620 . . 3  |-  ( E. x  e.  { A } y  =  [
x ] R  <->  y  =  [ A ] R )
54abbii 2282 . 2  |-  { y  |  E. x  e. 
{ A } y  =  [ x ] R }  =  {
y  |  y  =  [ A ] R }
6 df-qs 6507 . 2  |-  ( { A } /. R
)  =  { y  |  E. x  e. 
{ A } y  =  [ x ] R }
7 df-sn 3582 . 2  |-  { [ A ] R }  =  { y  |  y  =  [ A ] R }
85, 6, 73eqtr4ri 2197 1  |-  { [ A ] R }  =  ( { A } /. R )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   _Vcvv 2726   {csn 3576   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503  df-qs 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator