| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snec | Unicode version | ||
| Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| snec.1 |
|
| Ref | Expression |
|---|---|
| snec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snec.1 |
. . . 4
| |
| 2 | eceq1 6715 |
. . . . 5
| |
| 3 | 2 | eqeq2d 2241 |
. . . 4
|
| 4 | 1, 3 | rexsn 3710 |
. . 3
|
| 5 | 4 | abbii 2345 |
. 2
|
| 6 | df-qs 6686 |
. 2
| |
| 7 | df-sn 3672 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4ri 2261 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-ec 6682 df-qs 6686 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |