ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snec Unicode version

Theorem snec 6420
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
snec.1  |-  A  e. 
_V
Assertion
Ref Expression
snec  |-  { [ A ] R }  =  ( { A } /. R )

Proof of Theorem snec
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snec.1 . . . 4  |-  A  e. 
_V
2 eceq1 6394 . . . . 5  |-  ( x  =  A  ->  [ x ] R  =  [ A ] R )
32eqeq2d 2111 . . . 4  |-  ( x  =  A  ->  (
y  =  [ x ] R  <->  y  =  [ A ] R ) )
41, 3rexsn 3515 . . 3  |-  ( E. x  e.  { A } y  =  [
x ] R  <->  y  =  [ A ] R )
54abbii 2215 . 2  |-  { y  |  E. x  e. 
{ A } y  =  [ x ] R }  =  {
y  |  y  =  [ A ] R }
6 df-qs 6365 . 2  |-  ( { A } /. R
)  =  { y  |  E. x  e. 
{ A } y  =  [ x ] R }
7 df-sn 3480 . 2  |-  { [ A ] R }  =  { y  |  y  =  [ A ] R }
85, 6, 73eqtr4ri 2131 1  |-  { [ A ] R }  =  ( { A } /. R )
Colors of variables: wff set class
Syntax hints:    = wceq 1299    e. wcel 1448   {cab 2086   E.wrex 2376   _Vcvv 2641   {csn 3474   [cec 6357   /.cqs 6358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-xp 4483  df-cnv 4485  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-ec 6361  df-qs 6365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator