| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-qs | GIF version | ||
| Description: Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| df-qs | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | cqs 6591 | . 2 class (𝐴 / 𝑅) |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 4 | cv 1363 | . . . . 5 class 𝑦 |
| 6 | vx | . . . . . . 7 setvar 𝑥 | |
| 7 | 6 | cv 1363 | . . . . . 6 class 𝑥 |
| 8 | 7, 2 | cec 6590 | . . . . 5 class [𝑥]𝑅 |
| 9 | 5, 8 | wceq 1364 | . . . 4 wff 𝑦 = [𝑥]𝑅 |
| 10 | 9, 6, 1 | wrex 2476 | . . 3 wff ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 |
| 11 | 10, 4 | cab 2182 | . 2 class {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 12 | 3, 11 | wceq 1364 | 1 wff (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| Colors of variables: wff set class |
| This definition is referenced by: qseq1 6642 qseq2 6643 elqsg 6644 qsexg 6650 uniqs 6652 snec 6655 qsinxp 6670 qliftf 6679 quslem 12967 |
| Copyright terms: Public domain | W3C validator |