ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsinxp Unicode version

Theorem qsinxp 6471
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Assertion
Ref Expression
qsinxp  |-  ( ( R " A ) 
C_  A  ->  ( A /. R )  =  ( A /. ( R  i^i  ( A  X.  A ) ) ) )

Proof of Theorem qsinxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecinxp 6470 . . . . 5  |-  ( ( ( R " A
)  C_  A  /\  x  e.  A )  ->  [ x ] R  =  [ x ] ( R  i^i  ( A  X.  A ) ) )
21eqeq2d 2127 . . . 4  |-  ( ( ( R " A
)  C_  A  /\  x  e.  A )  ->  ( y  =  [
x ] R  <->  y  =  [ x ] ( R  i^i  ( A  X.  A ) ) ) )
32rexbidva 2409 . . 3  |-  ( ( R " A ) 
C_  A  ->  ( E. x  e.  A  y  =  [ x ] R  <->  E. x  e.  A  y  =  [ x ] ( R  i^i  ( A  X.  A
) ) ) )
43abbidv 2233 . 2  |-  ( ( R " A ) 
C_  A  ->  { y  |  E. x  e.  A  y  =  [
x ] R }  =  { y  |  E. x  e.  A  y  =  [ x ] ( R  i^i  ( A  X.  A ) ) } )
5 df-qs 6401 . 2  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
6 df-qs 6401 . 2  |-  ( A /. ( R  i^i  ( A  X.  A
) ) )  =  { y  |  E. x  e.  A  y  =  [ x ] ( R  i^i  ( A  X.  A ) ) }
74, 5, 63eqtr4g 2173 1  |-  ( ( R " A ) 
C_  A  ->  ( A /. R )  =  ( A /. ( R  i^i  ( A  X.  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   {cab 2101   E.wrex 2392    i^i cin 3038    C_ wss 3039    X. cxp 4505   "cima 4510   [cec 6393   /.cqs 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514  df-cnv 4515  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-ec 6397  df-qs 6401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator