ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-wetr Unicode version

Definition df-wetr 4425
Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4613). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of  Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.)
Assertion
Ref Expression
df-wetr  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
Distinct variable groups:    x, A, y, z    x, R, y, z

Detailed syntax breakdown of Definition df-wetr
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wwe 4421 . 2  wff  R  We  A
41, 2wfr 4419 . . 3  wff  R  Fr  A
5 vx . . . . . . . . . 10  setvar  x
65cv 1394 . . . . . . . . 9  class  x
7 vy . . . . . . . . . 10  setvar  y
87cv 1394 . . . . . . . . 9  class  y
96, 8, 2wbr 4083 . . . . . . . 8  wff  x R y
10 vz . . . . . . . . . 10  setvar  z
1110cv 1394 . . . . . . . . 9  class  z
128, 11, 2wbr 4083 . . . . . . . 8  wff  y R z
139, 12wa 104 . . . . . . 7  wff  ( x R y  /\  y R z )
146, 11, 2wbr 4083 . . . . . . 7  wff  x R z
1513, 14wi 4 . . . . . 6  wff  ( ( x R y  /\  y R z )  ->  x R z )
1615, 10, 1wral 2508 . . . . 5  wff  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
1716, 7, 1wral 2508 . . . 4  wff  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
1817, 5, 1wral 2508 . . 3  wff  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
194, 18wa 104 . 2  wff  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) )
203, 19wb 105 1  wff  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
Colors of variables: wff set class
This definition is referenced by:  nfwe  4446  weeq1  4447  weeq2  4448  wefr  4449  wepo  4450  wetrep  4451  we0  4452  ordwe  4668  wessep  4670  reg3exmidlemwe  4671
  Copyright terms: Public domain W3C validator