ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-wetr Unicode version

Definition df-wetr 4317
Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4503). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of  Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.)
Assertion
Ref Expression
df-wetr  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
Distinct variable groups:    x, A, y, z    x, R, y, z

Detailed syntax breakdown of Definition df-wetr
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wwe 4313 . 2  wff  R  We  A
41, 2wfr 4311 . . 3  wff  R  Fr  A
5 vx . . . . . . . . . 10  setvar  x
65cv 1347 . . . . . . . . 9  class  x
7 vy . . . . . . . . . 10  setvar  y
87cv 1347 . . . . . . . . 9  class  y
96, 8, 2wbr 3987 . . . . . . . 8  wff  x R y
10 vz . . . . . . . . . 10  setvar  z
1110cv 1347 . . . . . . . . 9  class  z
128, 11, 2wbr 3987 . . . . . . . 8  wff  y R z
139, 12wa 103 . . . . . . 7  wff  ( x R y  /\  y R z )
146, 11, 2wbr 3987 . . . . . . 7  wff  x R z
1513, 14wi 4 . . . . . 6  wff  ( ( x R y  /\  y R z )  ->  x R z )
1615, 10, 1wral 2448 . . . . 5  wff  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
1716, 7, 1wral 2448 . . . 4  wff  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
1817, 5, 1wral 2448 . . 3  wff  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
194, 18wa 103 . 2  wff  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) )
203, 19wb 104 1  wff  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
Colors of variables: wff set class
This definition is referenced by:  nfwe  4338  weeq1  4339  weeq2  4340  wefr  4341  wepo  4342  wetrep  4343  we0  4344  ordwe  4558  wessep  4560  reg3exmidlemwe  4561
  Copyright terms: Public domain W3C validator