ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-wetr Unicode version

Definition df-wetr 4381
Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4569). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of  Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.)
Assertion
Ref Expression
df-wetr  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
Distinct variable groups:    x, A, y, z    x, R, y, z

Detailed syntax breakdown of Definition df-wetr
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wwe 4377 . 2  wff  R  We  A
41, 2wfr 4375 . . 3  wff  R  Fr  A
5 vx . . . . . . . . . 10  setvar  x
65cv 1372 . . . . . . . . 9  class  x
7 vy . . . . . . . . . 10  setvar  y
87cv 1372 . . . . . . . . 9  class  y
96, 8, 2wbr 4044 . . . . . . . 8  wff  x R y
10 vz . . . . . . . . . 10  setvar  z
1110cv 1372 . . . . . . . . 9  class  z
128, 11, 2wbr 4044 . . . . . . . 8  wff  y R z
139, 12wa 104 . . . . . . 7  wff  ( x R y  /\  y R z )
146, 11, 2wbr 4044 . . . . . . 7  wff  x R z
1513, 14wi 4 . . . . . 6  wff  ( ( x R y  /\  y R z )  ->  x R z )
1615, 10, 1wral 2484 . . . . 5  wff  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
1716, 7, 1wral 2484 . . . 4  wff  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
1817, 5, 1wral 2484 . . 3  wff  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
194, 18wa 104 . 2  wff  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) )
203, 19wb 105 1  wff  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
Colors of variables: wff set class
This definition is referenced by:  nfwe  4402  weeq1  4403  weeq2  4404  wefr  4405  wepo  4406  wetrep  4407  we0  4408  ordwe  4624  wessep  4626  reg3exmidlemwe  4627
  Copyright terms: Public domain W3C validator