ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-wetr Unicode version

Definition df-wetr 4399
Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4587). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of  Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.)
Assertion
Ref Expression
df-wetr  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
Distinct variable groups:    x, A, y, z    x, R, y, z

Detailed syntax breakdown of Definition df-wetr
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wwe 4395 . 2  wff  R  We  A
41, 2wfr 4393 . . 3  wff  R  Fr  A
5 vx . . . . . . . . . 10  setvar  x
65cv 1372 . . . . . . . . 9  class  x
7 vy . . . . . . . . . 10  setvar  y
87cv 1372 . . . . . . . . 9  class  y
96, 8, 2wbr 4059 . . . . . . . 8  wff  x R y
10 vz . . . . . . . . . 10  setvar  z
1110cv 1372 . . . . . . . . 9  class  z
128, 11, 2wbr 4059 . . . . . . . 8  wff  y R z
139, 12wa 104 . . . . . . 7  wff  ( x R y  /\  y R z )
146, 11, 2wbr 4059 . . . . . . 7  wff  x R z
1513, 14wi 4 . . . . . 6  wff  ( ( x R y  /\  y R z )  ->  x R z )
1615, 10, 1wral 2486 . . . . 5  wff  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
1716, 7, 1wral 2486 . . . 4  wff  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
1817, 5, 1wral 2486 . . 3  wff  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z )
194, 18wa 104 . 2  wff  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
( x R y  /\  y R z )  ->  x R
z ) )
203, 19wb 105 1  wff  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
Colors of variables: wff set class
This definition is referenced by:  nfwe  4420  weeq1  4421  weeq2  4422  wefr  4423  wepo  4424  wetrep  4425  we0  4426  ordwe  4642  wessep  4644  reg3exmidlemwe  4645
  Copyright terms: Public domain W3C validator