Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > wepo | Unicode version |
Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.) |
Ref | Expression |
---|---|
wepo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 4336 | . . . 4 | |
2 | frirrg 4328 | . . . 4 | |
3 | 1, 2 | syl3an1 1261 | . . 3 |
4 | 3 | 3expa 1193 | . 2 |
5 | df-3an 970 | . . 3 | |
6 | df-wetr 4312 | . . . . . . . . . 10 | |
7 | 6 | simprbi 273 | . . . . . . . . 9 |
8 | 7 | adantr 274 | . . . . . . . 8 |
9 | 8 | r19.21bi 2554 | . . . . . . 7 |
10 | 9 | r19.21bi 2554 | . . . . . 6 |
11 | 10 | anasss 397 | . . . . 5 |
12 | 11 | r19.21bi 2554 | . . . 4 |
13 | 12 | anasss 397 | . . 3 |
14 | 5, 13 | sylan2b 285 | . 2 |
15 | 4, 14 | ispod 4282 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wcel 2136 wral 2444 class class class wbr 3982 wpo 4272 wfr 4306 wwe 4308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-po 4274 df-frfor 4309 df-frind 4310 df-wetr 4312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |