ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wepo Unicode version

Theorem wepo 4424
Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.)
Assertion
Ref Expression
wepo  |-  ( ( R  We  A  /\  A  e.  V )  ->  R  Po  A )

Proof of Theorem wepo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wefr 4423 . . . 4  |-  ( R  We  A  ->  R  Fr  A )
2 frirrg 4415 . . . 4  |-  ( ( R  Fr  A  /\  A  e.  V  /\  x  e.  A )  ->  -.  x R x )
31, 2syl3an1 1283 . . 3  |-  ( ( R  We  A  /\  A  e.  V  /\  x  e.  A )  ->  -.  x R x )
433expa 1206 . 2  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  x  e.  A )  ->  -.  x R x )
5 df-3an 983 . . 3  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  <->  ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A ) )
6 df-wetr 4399 . . . . . . . . . 10  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
76simprbi 275 . . . . . . . . 9  |-  ( R  We  A  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) )
87adantr 276 . . . . . . . 8  |-  ( ( R  We  A  /\  A  e.  V )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z ) )
98r19.21bi 2596 . . . . . . 7  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  x  e.  A )  ->  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) )
109r19.21bi 2596 . . . . . 6  |-  ( ( ( ( R  We  A  /\  A  e.  V
)  /\  x  e.  A )  /\  y  e.  A )  ->  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) )
1110anasss 399 . . . . 5  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  ( x  e.  A  /\  y  e.  A ) )  ->  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z ) )
1211r19.21bi 2596 . . . 4  |-  ( ( ( ( R  We  A  /\  A  e.  V
)  /\  ( x  e.  A  /\  y  e.  A ) )  /\  z  e.  A )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
1312anasss 399 . . 3  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  z  e.  A
) )  ->  (
( x R y  /\  y R z )  ->  x R
z ) )
145, 13sylan2b 287 . 2  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x R y  /\  y R z )  ->  x R z ) )
154, 14ispod 4369 1  |-  ( ( R  We  A  /\  A  e.  V )  ->  R  Po  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2178   A.wral 2486   class class class wbr 4059    Po wpo 4359    Fr wfr 4393    We wwe 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-po 4361  df-frfor 4396  df-frind 4397  df-wetr 4399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator