Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > wepo | Unicode version |
Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.) |
Ref | Expression |
---|---|
wepo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 4343 | . . . 4 | |
2 | frirrg 4335 | . . . 4 | |
3 | 1, 2 | syl3an1 1266 | . . 3 |
4 | 3 | 3expa 1198 | . 2 |
5 | df-3an 975 | . . 3 | |
6 | df-wetr 4319 | . . . . . . . . . 10 | |
7 | 6 | simprbi 273 | . . . . . . . . 9 |
8 | 7 | adantr 274 | . . . . . . . 8 |
9 | 8 | r19.21bi 2558 | . . . . . . 7 |
10 | 9 | r19.21bi 2558 | . . . . . 6 |
11 | 10 | anasss 397 | . . . . 5 |
12 | 11 | r19.21bi 2558 | . . . 4 |
13 | 12 | anasss 397 | . . 3 |
14 | 5, 13 | sylan2b 285 | . 2 |
15 | 4, 14 | ispod 4289 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 973 wcel 2141 wral 2448 class class class wbr 3989 wpo 4279 wfr 4313 wwe 4315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-po 4281 df-frfor 4316 df-frind 4317 df-wetr 4319 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |