ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  weeq2 Unicode version

Theorem weeq2 4392
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
weeq2  |-  ( A  =  B  ->  ( R  We  A  <->  R  We  B ) )

Proof of Theorem weeq2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freq2 4381 . . 3  |-  ( A  =  B  ->  ( R  Fr  A  <->  R  Fr  B ) )
2 raleq 2693 . . . . 5  |-  ( A  =  B  ->  ( A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z )  <->  A. z  e.  B  ( (
x R y  /\  y R z )  ->  x R z ) ) )
32raleqbi1dv 2705 . . . 4  |-  ( A  =  B  ->  ( A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z )  <->  A. y  e.  B  A. z  e.  B  ( (
x R y  /\  y R z )  ->  x R z ) ) )
43raleqbi1dv 2705 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x R y  /\  y R z )  ->  x R z ) ) )
51, 4anbi12d 473 . 2  |-  ( A  =  B  ->  (
( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( R  Fr  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
6 df-wetr 4369 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
7 df-wetr 4369 . 2  |-  ( R  We  B  <->  ( R  Fr  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x R y  /\  y R z )  ->  x R z ) ) )
85, 6, 73bitr4g 223 1  |-  ( A  =  B  ->  ( R  We  A  <->  R  We  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2475   class class class wbr 4033    Fr wfr 4363    We wwe 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-in 3163  df-ss 3170  df-frfor 4366  df-frind 4367  df-wetr 4369
This theorem is referenced by:  reg3exmid  4616
  Copyright terms: Public domain W3C validator