Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > weeq2 | Unicode version |
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
weeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freq2 4340 | . . 3 | |
2 | raleq 2670 | . . . . 5 | |
3 | 2 | raleqbi1dv 2678 | . . . 4 |
4 | 3 | raleqbi1dv 2678 | . . 3 |
5 | 1, 4 | anbi12d 473 | . 2 |
6 | df-wetr 4328 | . 2 | |
7 | df-wetr 4328 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 223 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wral 2453 class class class wbr 3998 wfr 4322 wwe 4324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-in 3133 df-ss 3140 df-frfor 4325 df-frind 4326 df-wetr 4328 |
This theorem is referenced by: reg3exmid 4573 |
Copyright terms: Public domain | W3C validator |