ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  we0 Unicode version

Theorem we0 4416
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
we0  |-  R  We  (/)

Proof of Theorem we0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fr0 4406 . 2  |-  R  Fr  (/)
2 ral0 3566 . 2  |-  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( ( x R y  /\  y R z )  ->  x R z )
3 df-wetr 4389 . 2  |-  ( R  We  (/)  <->  ( R  Fr  (/) 
/\  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( ( x R y  /\  y R z )  ->  x R z ) ) )
41, 2, 3mpbir2an 945 1  |-  R  We  (/)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wral 2485   (/)c0 3464   class class class wbr 4051    Fr wfr 4383    We wwe 4385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-frfor 4386  df-frind 4387  df-wetr 4389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator