ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wetrep Unicode version

Theorem wetrep 4396
Description: An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wetrep  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
Distinct variable group:    x, A, y, z

Proof of Theorem wetrep
StepHypRef Expression
1 df-3an 982 . . 3  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  <->  ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A ) )
2 df-wetr 4370 . . . . . . . . 9  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
32simprbi 275 . . . . . . . 8  |-  (  _E  We  A  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
43r19.21bi 2585 . . . . . . 7  |-  ( (  _E  We  A  /\  x  e.  A )  ->  A. y  e.  A  A. z  e.  A  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
54r19.21bi 2585 . . . . . 6  |-  ( ( (  _E  We  A  /\  x  e.  A
)  /\  y  e.  A )  ->  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
65anasss 399 . . . . 5  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
76r19.21bi 2585 . . . 4  |-  ( ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
( x  _E  y  /\  y  _E  z
)  ->  x  _E  z ) )
87anasss 399 . . 3  |-  ( (  _E  We  A  /\  ( ( x  e.  A  /\  y  e.  A )  /\  z  e.  A ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
91, 8sylan2b 287 . 2  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  _E  y  /\  y  _E  z
)  ->  x  _E  z ) )
10 epel 4328 . . 3  |-  ( x  _E  y  <->  x  e.  y )
11 epel 4328 . . 3  |-  ( y  _E  z  <->  y  e.  z )
1210, 11anbi12i 460 . 2  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
13 epel 4328 . 2  |-  ( x  _E  z  <->  x  e.  z )
149, 12, 133imtr3g 204 1  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   A.wral 2475   class class class wbr 4034    _E cep 4323    Fr wfr 4364    We wwe 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-eprel 4325  df-wetr 4370
This theorem is referenced by:  wessep  4615
  Copyright terms: Public domain W3C validator