ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wetrep Unicode version

Theorem wetrep 4425
Description: An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wetrep  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
Distinct variable group:    x, A, y, z

Proof of Theorem wetrep
StepHypRef Expression
1 df-3an 983 . . 3  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  <->  ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A ) )
2 df-wetr 4399 . . . . . . . . 9  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
32simprbi 275 . . . . . . . 8  |-  (  _E  We  A  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
43r19.21bi 2596 . . . . . . 7  |-  ( (  _E  We  A  /\  x  e.  A )  ->  A. y  e.  A  A. z  e.  A  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
54r19.21bi 2596 . . . . . 6  |-  ( ( (  _E  We  A  /\  x  e.  A
)  /\  y  e.  A )  ->  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
65anasss 399 . . . . 5  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
76r19.21bi 2596 . . . 4  |-  ( ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
( x  _E  y  /\  y  _E  z
)  ->  x  _E  z ) )
87anasss 399 . . 3  |-  ( (  _E  We  A  /\  ( ( x  e.  A  /\  y  e.  A )  /\  z  e.  A ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
91, 8sylan2b 287 . 2  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  _E  y  /\  y  _E  z
)  ->  x  _E  z ) )
10 epel 4357 . . 3  |-  ( x  _E  y  <->  x  e.  y )
11 epel 4357 . . 3  |-  ( y  _E  z  <->  y  e.  z )
1210, 11anbi12i 460 . 2  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
13 epel 4357 . 2  |-  ( x  _E  z  <->  x  e.  z )
149, 12, 133imtr3g 204 1  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2178   A.wral 2486   class class class wbr 4059    _E cep 4352    Fr wfr 4393    We wwe 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-eprel 4354  df-wetr 4399
This theorem is referenced by:  wessep  4644
  Copyright terms: Public domain W3C validator