ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  weeq1 Unicode version

Theorem weeq1 4421
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
weeq1  |-  ( R  =  S  ->  ( R  We  A  <->  S  We  A ) )

Proof of Theorem weeq1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freq1 4409 . . 3  |-  ( R  =  S  ->  ( R  Fr  A  <->  S  Fr  A ) )
2 breq 4061 . . . . . . . 8  |-  ( R  =  S  ->  (
x R y  <->  x S
y ) )
3 breq 4061 . . . . . . . 8  |-  ( R  =  S  ->  (
y R z  <->  y S
z ) )
42, 3anbi12d 473 . . . . . . 7  |-  ( R  =  S  ->  (
( x R y  /\  y R z )  <->  ( x S y  /\  y S z ) ) )
5 breq 4061 . . . . . . 7  |-  ( R  =  S  ->  (
x R z  <->  x S
z ) )
64, 5imbi12d 234 . . . . . 6  |-  ( R  =  S  ->  (
( ( x R y  /\  y R z )  ->  x R z )  <->  ( (
x S y  /\  y S z )  ->  x S z ) ) )
76ralbidv 2508 . . . . 5  |-  ( R  =  S  ->  ( A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z )  <->  A. z  e.  A  ( (
x S y  /\  y S z )  ->  x S z ) ) )
87ralbidv 2508 . . . 4  |-  ( R  =  S  ->  ( A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z )  <->  A. y  e.  A  A. z  e.  A  ( (
x S y  /\  y S z )  ->  x S z ) ) )
98ralbidv 2508 . . 3  |-  ( R  =  S  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x S y  /\  y S z )  ->  x S z ) ) )
101, 9anbi12d 473 . 2  |-  ( R  =  S  ->  (
( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( S  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x S y  /\  y S z )  ->  x S z ) ) ) )
11 df-wetr 4399 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
12 df-wetr 4399 . 2  |-  ( S  We  A  <->  ( S  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x S y  /\  y S z )  ->  x S z ) ) )
1310, 11, 123bitr4g 223 1  |-  ( R  =  S  ->  ( R  We  A  <->  S  We  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   A.wral 2486   class class class wbr 4059    Fr wfr 4393    We wwe 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-cleq 2200  df-clel 2203  df-ral 2491  df-br 4060  df-frfor 4396  df-frind 4397  df-wetr 4399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator