Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > weeq1 | Unicode version |
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
weeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freq1 4322 | . . 3 | |
2 | breq 3984 | . . . . . . . 8 | |
3 | breq 3984 | . . . . . . . 8 | |
4 | 2, 3 | anbi12d 465 | . . . . . . 7 |
5 | breq 3984 | . . . . . . 7 | |
6 | 4, 5 | imbi12d 233 | . . . . . 6 |
7 | 6 | ralbidv 2466 | . . . . 5 |
8 | 7 | ralbidv 2466 | . . . 4 |
9 | 8 | ralbidv 2466 | . . 3 |
10 | 1, 9 | anbi12d 465 | . 2 |
11 | df-wetr 4312 | . 2 | |
12 | df-wetr 4312 | . 2 | |
13 | 10, 11, 12 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wral 2444 class class class wbr 3982 wfr 4306 wwe 4308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-cleq 2158 df-clel 2161 df-ral 2449 df-br 3983 df-frfor 4309 df-frind 4310 df-wetr 4312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |