ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  weeq1 Unicode version

Theorem weeq1 4341
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
weeq1  |-  ( R  =  S  ->  ( R  We  A  <->  S  We  A ) )

Proof of Theorem weeq1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freq1 4329 . . 3  |-  ( R  =  S  ->  ( R  Fr  A  <->  S  Fr  A ) )
2 breq 3991 . . . . . . . 8  |-  ( R  =  S  ->  (
x R y  <->  x S
y ) )
3 breq 3991 . . . . . . . 8  |-  ( R  =  S  ->  (
y R z  <->  y S
z ) )
42, 3anbi12d 470 . . . . . . 7  |-  ( R  =  S  ->  (
( x R y  /\  y R z )  <->  ( x S y  /\  y S z ) ) )
5 breq 3991 . . . . . . 7  |-  ( R  =  S  ->  (
x R z  <->  x S
z ) )
64, 5imbi12d 233 . . . . . 6  |-  ( R  =  S  ->  (
( ( x R y  /\  y R z )  ->  x R z )  <->  ( (
x S y  /\  y S z )  ->  x S z ) ) )
76ralbidv 2470 . . . . 5  |-  ( R  =  S  ->  ( A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z )  <->  A. z  e.  A  ( (
x S y  /\  y S z )  ->  x S z ) ) )
87ralbidv 2470 . . . 4  |-  ( R  =  S  ->  ( A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z )  <->  A. y  e.  A  A. z  e.  A  ( (
x S y  /\  y S z )  ->  x S z ) ) )
98ralbidv 2470 . . 3  |-  ( R  =  S  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x S y  /\  y S z )  ->  x S z ) ) )
101, 9anbi12d 470 . 2  |-  ( R  =  S  ->  (
( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( S  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x S y  /\  y S z )  ->  x S z ) ) ) )
11 df-wetr 4319 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
12 df-wetr 4319 . 2  |-  ( S  We  A  <->  ( S  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x S y  /\  y S z )  ->  x S z ) ) )
1310, 11, 123bitr4g 222 1  |-  ( R  =  S  ->  ( R  We  A  <->  S  We  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   A.wral 2448   class class class wbr 3989    Fr wfr 4313    We wwe 4315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-clel 2166  df-ral 2453  df-br 3990  df-frfor 4316  df-frind 4317  df-wetr 4319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator