| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > weeq1 | Unicode version | ||
| Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| weeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq1 4409 |
. . 3
| |
| 2 | breq 4061 |
. . . . . . . 8
| |
| 3 | breq 4061 |
. . . . . . . 8
| |
| 4 | 2, 3 | anbi12d 473 |
. . . . . . 7
|
| 5 | breq 4061 |
. . . . . . 7
| |
| 6 | 4, 5 | imbi12d 234 |
. . . . . 6
|
| 7 | 6 | ralbidv 2508 |
. . . . 5
|
| 8 | 7 | ralbidv 2508 |
. . . 4
|
| 9 | 8 | ralbidv 2508 |
. . 3
|
| 10 | 1, 9 | anbi12d 473 |
. 2
|
| 11 | df-wetr 4399 |
. 2
| |
| 12 | df-wetr 4399 |
. 2
| |
| 13 | 10, 11, 12 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-cleq 2200 df-clel 2203 df-ral 2491 df-br 4060 df-frfor 4396 df-frind 4397 df-wetr 4399 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |