| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtriexmid | Unicode version | ||
| Description: Ordinal trichotomy
implies the law of the excluded middle (that is,
decidability of an arbitrary proposition).
This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Also see exmidontri 7420 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordtriexmid.1 |
|
| Ref | Expression |
|---|---|
| ordtriexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 |
. . . 4
| |
| 2 | ordtriexmidlem 4610 |
. . . . . 6
| |
| 3 | eleq1 2292 |
. . . . . . . 8
| |
| 4 | eqeq1 2236 |
. . . . . . . 8
| |
| 5 | eleq2 2293 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | 3orbi123d 1345 |
. . . . . . 7
|
| 7 | 0elon 4482 |
. . . . . . . 8
| |
| 8 | 0ex 4210 |
. . . . . . . . 9
| |
| 9 | eleq1 2292 |
. . . . . . . . . . 11
| |
| 10 | 9 | anbi2d 464 |
. . . . . . . . . 10
|
| 11 | eleq2 2293 |
. . . . . . . . . . 11
| |
| 12 | eqeq2 2239 |
. . . . . . . . . . 11
| |
| 13 | eleq1 2292 |
. . . . . . . . . . 11
| |
| 14 | 11, 12, 13 | 3orbi123d 1345 |
. . . . . . . . . 10
|
| 15 | 10, 14 | imbi12d 234 |
. . . . . . . . 9
|
| 16 | ordtriexmid.1 |
. . . . . . . . . 10
| |
| 17 | 16 | rspec2 2619 |
. . . . . . . . 9
|
| 18 | 8, 15, 17 | vtocl 2855 |
. . . . . . . 8
|
| 19 | 7, 18 | mpan2 425 |
. . . . . . 7
|
| 20 | 6, 19 | vtoclga 2867 |
. . . . . 6
|
| 21 | 2, 20 | ax-mp 5 |
. . . . 5
|
| 22 | 3orass 1005 |
. . . . 5
| |
| 23 | 21, 22 | mpbi 145 |
. . . 4
|
| 24 | 1, 23 | mtpor 1467 |
. . 3
|
| 25 | ordtriexmidlem2 4611 |
. . . 4
| |
| 26 | 8 | snid 3697 |
. . . . . 6
|
| 27 | biidd 172 |
. . . . . . 7
| |
| 28 | 27 | elrab3 2960 |
. . . . . 6
|
| 29 | 26, 28 | ax-mp 5 |
. . . . 5
|
| 30 | 29 | biimpi 120 |
. . . 4
|
| 31 | 25, 30 | orim12i 764 |
. . 3
|
| 32 | 24, 31 | ax-mp 5 |
. 2
|
| 33 | orcom 733 |
. 2
| |
| 34 | 32, 33 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |