Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtriexmid | Unicode version |
Description: Ordinal trichotomy
implies the law of the excluded middle (that is,
decidability of an arbitrary proposition).
This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.) |
Ref | Expression |
---|---|
ordtriexmid.1 |
Ref | Expression |
---|---|
ordtriexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3398 | . . . 4 | |
2 | ordtriexmidlem 4477 | . . . . . 6 | |
3 | eleq1 2220 | . . . . . . . 8 | |
4 | eqeq1 2164 | . . . . . . . 8 | |
5 | eleq2 2221 | . . . . . . . 8 | |
6 | 3, 4, 5 | 3orbi123d 1293 | . . . . . . 7 |
7 | 0elon 4352 | . . . . . . . 8 | |
8 | 0ex 4091 | . . . . . . . . 9 | |
9 | eleq1 2220 | . . . . . . . . . . 11 | |
10 | 9 | anbi2d 460 | . . . . . . . . . 10 |
11 | eleq2 2221 | . . . . . . . . . . 11 | |
12 | eqeq2 2167 | . . . . . . . . . . 11 | |
13 | eleq1 2220 | . . . . . . . . . . 11 | |
14 | 11, 12, 13 | 3orbi123d 1293 | . . . . . . . . . 10 |
15 | 10, 14 | imbi12d 233 | . . . . . . . . 9 |
16 | ordtriexmid.1 | . . . . . . . . . 10 | |
17 | 16 | rspec2 2546 | . . . . . . . . 9 |
18 | 8, 15, 17 | vtocl 2766 | . . . . . . . 8 |
19 | 7, 18 | mpan2 422 | . . . . . . 7 |
20 | 6, 19 | vtoclga 2778 | . . . . . 6 |
21 | 2, 20 | ax-mp 5 | . . . . 5 |
22 | 3orass 966 | . . . . 5 | |
23 | 21, 22 | mpbi 144 | . . . 4 |
24 | 1, 23 | mtpor 1407 | . . 3 |
25 | ordtriexmidlem2 4478 | . . . 4 | |
26 | 8 | snid 3591 | . . . . . 6 |
27 | biidd 171 | . . . . . . 7 | |
28 | 27 | elrab3 2869 | . . . . . 6 |
29 | 26, 28 | ax-mp 5 | . . . . 5 |
30 | 29 | biimpi 119 | . . . 4 |
31 | 25, 30 | orim12i 749 | . . 3 |
32 | 24, 31 | ax-mp 5 | . 2 |
33 | orcom 718 | . 2 | |
34 | 32, 33 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3o 962 wceq 1335 wcel 2128 wral 2435 crab 2439 c0 3394 csn 3560 con0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-uni 3773 df-tr 4063 df-iord 4326 df-on 4328 df-suc 4331 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |