| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtriexmid | Unicode version | ||
| Description: Ordinal trichotomy
implies the law of the excluded middle (that is,
decidability of an arbitrary proposition).
This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Also see exmidontri 7322 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordtriexmid.1 |
|
| Ref | Expression |
|---|---|
| ordtriexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3455 |
. . . 4
| |
| 2 | ordtriexmidlem 4556 |
. . . . . 6
| |
| 3 | eleq1 2259 |
. . . . . . . 8
| |
| 4 | eqeq1 2203 |
. . . . . . . 8
| |
| 5 | eleq2 2260 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | 3orbi123d 1322 |
. . . . . . 7
|
| 7 | 0elon 4428 |
. . . . . . . 8
| |
| 8 | 0ex 4161 |
. . . . . . . . 9
| |
| 9 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 10 | 9 | anbi2d 464 |
. . . . . . . . . 10
|
| 11 | eleq2 2260 |
. . . . . . . . . . 11
| |
| 12 | eqeq2 2206 |
. . . . . . . . . . 11
| |
| 13 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 14 | 11, 12, 13 | 3orbi123d 1322 |
. . . . . . . . . 10
|
| 15 | 10, 14 | imbi12d 234 |
. . . . . . . . 9
|
| 16 | ordtriexmid.1 |
. . . . . . . . . 10
| |
| 17 | 16 | rspec2 2586 |
. . . . . . . . 9
|
| 18 | 8, 15, 17 | vtocl 2818 |
. . . . . . . 8
|
| 19 | 7, 18 | mpan2 425 |
. . . . . . 7
|
| 20 | 6, 19 | vtoclga 2830 |
. . . . . 6
|
| 21 | 2, 20 | ax-mp 5 |
. . . . 5
|
| 22 | 3orass 983 |
. . . . 5
| |
| 23 | 21, 22 | mpbi 145 |
. . . 4
|
| 24 | 1, 23 | mtpor 1436 |
. . 3
|
| 25 | ordtriexmidlem2 4557 |
. . . 4
| |
| 26 | 8 | snid 3654 |
. . . . . 6
|
| 27 | biidd 172 |
. . . . . . 7
| |
| 28 | 27 | elrab3 2921 |
. . . . . 6
|
| 29 | 26, 28 | ax-mp 5 |
. . . . 5
|
| 30 | 29 | biimpi 120 |
. . . 4
|
| 31 | 25, 30 | orim12i 760 |
. . 3
|
| 32 | 24, 31 | ax-mp 5 |
. 2
|
| 33 | orcom 729 |
. 2
| |
| 34 | 32, 33 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |