Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtriexmid | Unicode version |
Description: Ordinal trichotomy
implies the law of the excluded middle (that is,
decidability of an arbitrary proposition).
This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Also see exmidontri 7216 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.) |
Ref | Expression |
---|---|
ordtriexmid.1 |
Ref | Expression |
---|---|
ordtriexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3418 | . . . 4 | |
2 | ordtriexmidlem 4503 | . . . . . 6 | |
3 | eleq1 2233 | . . . . . . . 8 | |
4 | eqeq1 2177 | . . . . . . . 8 | |
5 | eleq2 2234 | . . . . . . . 8 | |
6 | 3, 4, 5 | 3orbi123d 1306 | . . . . . . 7 |
7 | 0elon 4377 | . . . . . . . 8 | |
8 | 0ex 4116 | . . . . . . . . 9 | |
9 | eleq1 2233 | . . . . . . . . . . 11 | |
10 | 9 | anbi2d 461 | . . . . . . . . . 10 |
11 | eleq2 2234 | . . . . . . . . . . 11 | |
12 | eqeq2 2180 | . . . . . . . . . . 11 | |
13 | eleq1 2233 | . . . . . . . . . . 11 | |
14 | 11, 12, 13 | 3orbi123d 1306 | . . . . . . . . . 10 |
15 | 10, 14 | imbi12d 233 | . . . . . . . . 9 |
16 | ordtriexmid.1 | . . . . . . . . . 10 | |
17 | 16 | rspec2 2559 | . . . . . . . . 9 |
18 | 8, 15, 17 | vtocl 2784 | . . . . . . . 8 |
19 | 7, 18 | mpan2 423 | . . . . . . 7 |
20 | 6, 19 | vtoclga 2796 | . . . . . 6 |
21 | 2, 20 | ax-mp 5 | . . . . 5 |
22 | 3orass 976 | . . . . 5 | |
23 | 21, 22 | mpbi 144 | . . . 4 |
24 | 1, 23 | mtpor 1420 | . . 3 |
25 | ordtriexmidlem2 4504 | . . . 4 | |
26 | 8 | snid 3614 | . . . . . 6 |
27 | biidd 171 | . . . . . . 7 | |
28 | 27 | elrab3 2887 | . . . . . 6 |
29 | 26, 28 | ax-mp 5 | . . . . 5 |
30 | 29 | biimpi 119 | . . . 4 |
31 | 25, 30 | orim12i 754 | . . 3 |
32 | 24, 31 | ax-mp 5 | . 2 |
33 | orcom 723 | . 2 | |
34 | 32, 33 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3o 972 wceq 1348 wcel 2141 wral 2448 crab 2452 c0 3414 csn 3583 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |