ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmid Unicode version

Theorem ordtriexmid 4557
Description: Ordinal trichotomy implies the law of the excluded middle (that is, decidability of an arbitrary proposition).

This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Also see exmidontri 7306 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.)

Hypothesis
Ref Expression
ordtriexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
Assertion
Ref Expression
ordtriexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    x, y    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem ordtriexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 noel 3454 . . . 4  |-  -.  {
z  e.  { (/) }  |  ph }  e.  (/)
2 ordtriexmidlem 4555 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  e.  On
3 eleq1 2259 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  e.  (/) 
<->  { z  e.  { (/)
}  |  ph }  e.  (/) ) )
4 eqeq1 2203 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  =  (/) 
<->  { z  e.  { (/)
}  |  ph }  =  (/) ) )
5 eleq2 2260 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  x  <->  (/)  e.  { z  e.  { (/)
}  |  ph }
) )
63, 4, 53orbi123d 1322 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x )  <-> 
( { z  e. 
{ (/) }  |  ph }  e.  (/)  \/  {
z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } ) ) )
7 0elon 4427 . . . . . . . 8  |-  (/)  e.  On
8 0ex 4160 . . . . . . . . 9  |-  (/)  e.  _V
9 eleq1 2259 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  e.  On  <->  (/)  e.  On ) )
109anbi2d 464 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( ( x  e.  On  /\  y  e.  On )  <->  ( x  e.  On  /\  (/) 
e.  On ) ) )
11 eleq2 2260 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( x  e.  y  <->  x  e.  (/) ) )
12 eqeq2 2206 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( x  =  y  <->  x  =  (/) ) )
13 eleq1 2259 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  e.  x  <->  (/)  e.  x
) )
1411, 12, 133orbi123d 1322 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) ) )
1510, 14imbi12d 234 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )  <->  ( (
x  e.  On  /\  (/) 
e.  On )  -> 
( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) ) ) )
16 ordtriexmid.1 . . . . . . . . . 10  |-  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
1716rspec2 2586 . . . . . . . . 9  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
188, 15, 17vtocl 2818 . . . . . . . 8  |-  ( ( x  e.  On  /\  (/) 
e.  On )  -> 
( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) )
197, 18mpan2 425 . . . . . . 7  |-  ( x  e.  On  ->  (
x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) )
206, 19vtoclga 2830 . . . . . 6  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  ( { z  e.  { (/) }  |  ph }  e.  (/)  \/  {
z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } ) )
212, 20ax-mp 5 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  (/) 
\/  { z  e. 
{ (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )
22 3orass 983 . . . . 5  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  (/)  \/  { z  e.  { (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )  <-> 
( { z  e. 
{ (/) }  |  ph }  e.  (/)  \/  ( { z  e.  { (/)
}  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) ) )
2321, 22mpbi 145 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  e.  (/) 
\/  ( { z  e.  { (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) )
241, 23mtpor 1436 . . 3  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } )
25 ordtriexmidlem2 4556 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
268snid 3653 . . . . . 6  |-  (/)  e.  { (/)
}
27 biidd 172 . . . . . . 7  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
2827elrab3 2921 . . . . . 6  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
2926, 28ax-mp 5 . . . . 5  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
3029biimpi 120 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
3125, 30orim12i 760 . . 3  |-  ( ( { z  e.  { (/)
}  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )  ->  ( -.  ph  \/  ph ) )
3224, 31ax-mp 5 . 2  |-  ( -. 
ph  \/  ph )
33 orcom 729 . 2  |-  ( (
ph  \/  -.  ph )  <->  ( -.  ph  \/  ph )
)
3432, 33mpbir 146 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   (/)c0 3450   {csn 3622   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator