ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmid Unicode version

Theorem ordtriexmid 4612
Description: Ordinal trichotomy implies the law of the excluded middle (that is, decidability of an arbitrary proposition).

This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Also see exmidontri 7420 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.)

Hypothesis
Ref Expression
ordtriexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
Assertion
Ref Expression
ordtriexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    x, y    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem ordtriexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 noel 3495 . . . 4  |-  -.  {
z  e.  { (/) }  |  ph }  e.  (/)
2 ordtriexmidlem 4610 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  e.  On
3 eleq1 2292 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  e.  (/) 
<->  { z  e.  { (/)
}  |  ph }  e.  (/) ) )
4 eqeq1 2236 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  =  (/) 
<->  { z  e.  { (/)
}  |  ph }  =  (/) ) )
5 eleq2 2293 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  x  <->  (/)  e.  { z  e.  { (/)
}  |  ph }
) )
63, 4, 53orbi123d 1345 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x )  <-> 
( { z  e. 
{ (/) }  |  ph }  e.  (/)  \/  {
z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } ) ) )
7 0elon 4482 . . . . . . . 8  |-  (/)  e.  On
8 0ex 4210 . . . . . . . . 9  |-  (/)  e.  _V
9 eleq1 2292 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  e.  On  <->  (/)  e.  On ) )
109anbi2d 464 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( ( x  e.  On  /\  y  e.  On )  <->  ( x  e.  On  /\  (/) 
e.  On ) ) )
11 eleq2 2293 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( x  e.  y  <->  x  e.  (/) ) )
12 eqeq2 2239 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( x  =  y  <->  x  =  (/) ) )
13 eleq1 2292 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  e.  x  <->  (/)  e.  x
) )
1411, 12, 133orbi123d 1345 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) ) )
1510, 14imbi12d 234 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )  <->  ( (
x  e.  On  /\  (/) 
e.  On )  -> 
( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) ) ) )
16 ordtriexmid.1 . . . . . . . . . 10  |-  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
1716rspec2 2619 . . . . . . . . 9  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
188, 15, 17vtocl 2855 . . . . . . . 8  |-  ( ( x  e.  On  /\  (/) 
e.  On )  -> 
( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) )
197, 18mpan2 425 . . . . . . 7  |-  ( x  e.  On  ->  (
x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) )
206, 19vtoclga 2867 . . . . . 6  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  ( { z  e.  { (/) }  |  ph }  e.  (/)  \/  {
z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } ) )
212, 20ax-mp 5 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  (/) 
\/  { z  e. 
{ (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )
22 3orass 1005 . . . . 5  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  (/)  \/  { z  e.  { (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )  <-> 
( { z  e. 
{ (/) }  |  ph }  e.  (/)  \/  ( { z  e.  { (/)
}  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) ) )
2321, 22mpbi 145 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  e.  (/) 
\/  ( { z  e.  { (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) )
241, 23mtpor 1467 . . 3  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } )
25 ordtriexmidlem2 4611 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
268snid 3697 . . . . . 6  |-  (/)  e.  { (/)
}
27 biidd 172 . . . . . . 7  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
2827elrab3 2960 . . . . . 6  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
2926, 28ax-mp 5 . . . . 5  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
3029biimpi 120 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
3125, 30orim12i 764 . . 3  |-  ( ( { z  e.  { (/)
}  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )  ->  ( -.  ph  \/  ph ) )
3224, 31ax-mp 5 . 2  |-  ( -. 
ph  \/  ph )
33 orcom 733 . 2  |-  ( (
ph  \/  -.  ph )  <->  ( -.  ph  \/  ph )
)
3432, 33mpbir 146 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   (/)c0 3491   {csn 3666   Oncon0 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator