Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtriexmid | Unicode version |
Description: Ordinal trichotomy
implies the law of the excluded middle (that is,
decidability of an arbitrary proposition).
This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Also see exmidontri 7195 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.) |
Ref | Expression |
---|---|
ordtriexmid.1 |
Ref | Expression |
---|---|
ordtriexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . . 4 | |
2 | ordtriexmidlem 4496 | . . . . . 6 | |
3 | eleq1 2229 | . . . . . . . 8 | |
4 | eqeq1 2172 | . . . . . . . 8 | |
5 | eleq2 2230 | . . . . . . . 8 | |
6 | 3, 4, 5 | 3orbi123d 1301 | . . . . . . 7 |
7 | 0elon 4370 | . . . . . . . 8 | |
8 | 0ex 4109 | . . . . . . . . 9 | |
9 | eleq1 2229 | . . . . . . . . . . 11 | |
10 | 9 | anbi2d 460 | . . . . . . . . . 10 |
11 | eleq2 2230 | . . . . . . . . . . 11 | |
12 | eqeq2 2175 | . . . . . . . . . . 11 | |
13 | eleq1 2229 | . . . . . . . . . . 11 | |
14 | 11, 12, 13 | 3orbi123d 1301 | . . . . . . . . . 10 |
15 | 10, 14 | imbi12d 233 | . . . . . . . . 9 |
16 | ordtriexmid.1 | . . . . . . . . . 10 | |
17 | 16 | rspec2 2555 | . . . . . . . . 9 |
18 | 8, 15, 17 | vtocl 2780 | . . . . . . . 8 |
19 | 7, 18 | mpan2 422 | . . . . . . 7 |
20 | 6, 19 | vtoclga 2792 | . . . . . 6 |
21 | 2, 20 | ax-mp 5 | . . . . 5 |
22 | 3orass 971 | . . . . 5 | |
23 | 21, 22 | mpbi 144 | . . . 4 |
24 | 1, 23 | mtpor 1415 | . . 3 |
25 | ordtriexmidlem2 4497 | . . . 4 | |
26 | 8 | snid 3607 | . . . . . 6 |
27 | biidd 171 | . . . . . . 7 | |
28 | 27 | elrab3 2883 | . . . . . 6 |
29 | 26, 28 | ax-mp 5 | . . . . 5 |
30 | 29 | biimpi 119 | . . . 4 |
31 | 25, 30 | orim12i 749 | . . 3 |
32 | 24, 31 | ax-mp 5 | . 2 |
33 | orcom 718 | . 2 | |
34 | 32, 33 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3o 967 wceq 1343 wcel 2136 wral 2444 crab 2448 c0 3409 csn 3576 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |