| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtriexmid | Unicode version | ||
| Description: Ordinal trichotomy
implies the law of the excluded middle (that is,
decidability of an arbitrary proposition).
This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic". Also see exmidontri 7370 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordtriexmid.1 |
|
| Ref | Expression |
|---|---|
| ordtriexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3468 |
. . . 4
| |
| 2 | ordtriexmidlem 4575 |
. . . . . 6
| |
| 3 | eleq1 2269 |
. . . . . . . 8
| |
| 4 | eqeq1 2213 |
. . . . . . . 8
| |
| 5 | eleq2 2270 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | 3orbi123d 1324 |
. . . . . . 7
|
| 7 | 0elon 4447 |
. . . . . . . 8
| |
| 8 | 0ex 4179 |
. . . . . . . . 9
| |
| 9 | eleq1 2269 |
. . . . . . . . . . 11
| |
| 10 | 9 | anbi2d 464 |
. . . . . . . . . 10
|
| 11 | eleq2 2270 |
. . . . . . . . . . 11
| |
| 12 | eqeq2 2216 |
. . . . . . . . . . 11
| |
| 13 | eleq1 2269 |
. . . . . . . . . . 11
| |
| 14 | 11, 12, 13 | 3orbi123d 1324 |
. . . . . . . . . 10
|
| 15 | 10, 14 | imbi12d 234 |
. . . . . . . . 9
|
| 16 | ordtriexmid.1 |
. . . . . . . . . 10
| |
| 17 | 16 | rspec2 2596 |
. . . . . . . . 9
|
| 18 | 8, 15, 17 | vtocl 2829 |
. . . . . . . 8
|
| 19 | 7, 18 | mpan2 425 |
. . . . . . 7
|
| 20 | 6, 19 | vtoclga 2841 |
. . . . . 6
|
| 21 | 2, 20 | ax-mp 5 |
. . . . 5
|
| 22 | 3orass 984 |
. . . . 5
| |
| 23 | 21, 22 | mpbi 145 |
. . . 4
|
| 24 | 1, 23 | mtpor 1445 |
. . 3
|
| 25 | ordtriexmidlem2 4576 |
. . . 4
| |
| 26 | 8 | snid 3669 |
. . . . . 6
|
| 27 | biidd 172 |
. . . . . . 7
| |
| 28 | 27 | elrab3 2934 |
. . . . . 6
|
| 29 | 26, 28 | ax-mp 5 |
. . . . 5
|
| 30 | 29 | biimpi 120 |
. . . 4
|
| 31 | 25, 30 | orim12i 761 |
. . 3
|
| 32 | 24, 31 | ax-mp 5 |
. 2
|
| 33 | orcom 730 |
. 2
| |
| 34 | 32, 33 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |