![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-wetr | GIF version |
Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4554). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.) |
Ref | Expression |
---|---|
df-wetr | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wwe 4362 | . 2 wff 𝑅 We 𝐴 |
4 | 1, 2 | wfr 4360 | . . 3 wff 𝑅 Fr 𝐴 |
5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
6 | 5 | cv 1363 | . . . . . . . . 9 class 𝑥 |
7 | vy | . . . . . . . . . 10 setvar 𝑦 | |
8 | 7 | cv 1363 | . . . . . . . . 9 class 𝑦 |
9 | 6, 8, 2 | wbr 4030 | . . . . . . . 8 wff 𝑥𝑅𝑦 |
10 | vz | . . . . . . . . . 10 setvar 𝑧 | |
11 | 10 | cv 1363 | . . . . . . . . 9 class 𝑧 |
12 | 8, 11, 2 | wbr 4030 | . . . . . . . 8 wff 𝑦𝑅𝑧 |
13 | 9, 12 | wa 104 | . . . . . . 7 wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) |
14 | 6, 11, 2 | wbr 4030 | . . . . . . 7 wff 𝑥𝑅𝑧 |
15 | 13, 14 | wi 4 | . . . . . 6 wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
16 | 15, 10, 1 | wral 2472 | . . . . 5 wff ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
17 | 16, 7, 1 | wral 2472 | . . . 4 wff ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
18 | 17, 5, 1 | wral 2472 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
19 | 4, 18 | wa 104 | . 2 wff (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
20 | 3, 19 | wb 105 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
Colors of variables: wff set class |
This definition is referenced by: nfwe 4387 weeq1 4388 weeq2 4389 wefr 4390 wepo 4391 wetrep 4392 we0 4393 ordwe 4609 wessep 4611 reg3exmidlemwe 4612 |
Copyright terms: Public domain | W3C validator |