| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-wetr | GIF version | ||
| Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4568). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| df-wetr | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 4376 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 4374 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1371 | . . . . . . . . 9 class 𝑥 |
| 7 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 8 | 7 | cv 1371 | . . . . . . . . 9 class 𝑦 |
| 9 | 6, 8, 2 | wbr 4043 | . . . . . . . 8 wff 𝑥𝑅𝑦 |
| 10 | vz | . . . . . . . . . 10 setvar 𝑧 | |
| 11 | 10 | cv 1371 | . . . . . . . . 9 class 𝑧 |
| 12 | 8, 11, 2 | wbr 4043 | . . . . . . . 8 wff 𝑦𝑅𝑧 |
| 13 | 9, 12 | wa 104 | . . . . . . 7 wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) |
| 14 | 6, 11, 2 | wbr 4043 | . . . . . . 7 wff 𝑥𝑅𝑧 |
| 15 | 13, 14 | wi 4 | . . . . . 6 wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 16 | 15, 10, 1 | wral 2483 | . . . . 5 wff ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 17 | 16, 7, 1 | wral 2483 | . . . 4 wff ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 18 | 17, 5, 1 | wral 2483 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 19 | 4, 18 | wa 104 | . 2 wff (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 20 | 3, 19 | wb 105 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| Colors of variables: wff set class |
| This definition is referenced by: nfwe 4401 weeq1 4402 weeq2 4403 wefr 4404 wepo 4405 wetrep 4406 we0 4407 ordwe 4623 wessep 4625 reg3exmidlemwe 4626 |
| Copyright terms: Public domain | W3C validator |