| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-wetr | GIF version | ||
| Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4557). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| df-wetr | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 4365 | . 2 wff 𝑅 We 𝐴 | 
| 4 | 1, 2 | wfr 4363 | . . 3 wff 𝑅 Fr 𝐴 | 
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1363 | . . . . . . . . 9 class 𝑥 | 
| 7 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 8 | 7 | cv 1363 | . . . . . . . . 9 class 𝑦 | 
| 9 | 6, 8, 2 | wbr 4033 | . . . . . . . 8 wff 𝑥𝑅𝑦 | 
| 10 | vz | . . . . . . . . . 10 setvar 𝑧 | |
| 11 | 10 | cv 1363 | . . . . . . . . 9 class 𝑧 | 
| 12 | 8, 11, 2 | wbr 4033 | . . . . . . . 8 wff 𝑦𝑅𝑧 | 
| 13 | 9, 12 | wa 104 | . . . . . . 7 wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) | 
| 14 | 6, 11, 2 | wbr 4033 | . . . . . . 7 wff 𝑥𝑅𝑧 | 
| 15 | 13, 14 | wi 4 | . . . . . 6 wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | 
| 16 | 15, 10, 1 | wral 2475 | . . . . 5 wff ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | 
| 17 | 16, 7, 1 | wral 2475 | . . . 4 wff ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | 
| 18 | 17, 5, 1 | wral 2475 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | 
| 19 | 4, 18 | wa 104 | . 2 wff (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 20 | 3, 19 | wb 105 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| Colors of variables: wff set class | 
| This definition is referenced by: nfwe 4390 weeq1 4391 weeq2 4392 wefr 4393 wepo 4394 wetrep 4395 we0 4396 ordwe 4612 wessep 4614 reg3exmidlemwe 4615 | 
| Copyright terms: Public domain | W3C validator |