ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-wetr GIF version

Definition df-wetr 4370
Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4558). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.)
Assertion
Ref Expression
df-wetr (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Detailed syntax breakdown of Definition df-wetr
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wwe 4366 . 2 wff 𝑅 We 𝐴
41, 2wfr 4364 . . 3 wff 𝑅 Fr 𝐴
5 vx . . . . . . . . . 10 setvar 𝑥
65cv 1363 . . . . . . . . 9 class 𝑥
7 vy . . . . . . . . . 10 setvar 𝑦
87cv 1363 . . . . . . . . 9 class 𝑦
96, 8, 2wbr 4034 . . . . . . . 8 wff 𝑥𝑅𝑦
10 vz . . . . . . . . . 10 setvar 𝑧
1110cv 1363 . . . . . . . . 9 class 𝑧
128, 11, 2wbr 4034 . . . . . . . 8 wff 𝑦𝑅𝑧
139, 12wa 104 . . . . . . 7 wff (𝑥𝑅𝑦𝑦𝑅𝑧)
146, 11, 2wbr 4034 . . . . . . 7 wff 𝑥𝑅𝑧
1513, 14wi 4 . . . . . 6 wff ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
1615, 10, 1wral 2475 . . . . 5 wff 𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
1716, 7, 1wral 2475 . . . 4 wff 𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
1817, 5, 1wral 2475 . . 3 wff 𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
194, 18wa 104 . 2 wff (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
203, 19wb 105 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Colors of variables: wff set class
This definition is referenced by:  nfwe  4391  weeq1  4392  weeq2  4393  wefr  4394  wepo  4395  wetrep  4396  we0  4397  ordwe  4613  wessep  4615  reg3exmidlemwe  4616
  Copyright terms: Public domain W3C validator