| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-wetr | GIF version | ||
| Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4577). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| df-wetr | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 4385 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 4383 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1372 | . . . . . . . . 9 class 𝑥 |
| 7 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 8 | 7 | cv 1372 | . . . . . . . . 9 class 𝑦 |
| 9 | 6, 8, 2 | wbr 4051 | . . . . . . . 8 wff 𝑥𝑅𝑦 |
| 10 | vz | . . . . . . . . . 10 setvar 𝑧 | |
| 11 | 10 | cv 1372 | . . . . . . . . 9 class 𝑧 |
| 12 | 8, 11, 2 | wbr 4051 | . . . . . . . 8 wff 𝑦𝑅𝑧 |
| 13 | 9, 12 | wa 104 | . . . . . . 7 wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) |
| 14 | 6, 11, 2 | wbr 4051 | . . . . . . 7 wff 𝑥𝑅𝑧 |
| 15 | 13, 14 | wi 4 | . . . . . 6 wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 16 | 15, 10, 1 | wral 2485 | . . . . 5 wff ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 17 | 16, 7, 1 | wral 2485 | . . . 4 wff ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 18 | 17, 5, 1 | wral 2485 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 19 | 4, 18 | wa 104 | . 2 wff (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 20 | 3, 19 | wb 105 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| Colors of variables: wff set class |
| This definition is referenced by: nfwe 4410 weeq1 4411 weeq2 4412 wefr 4413 wepo 4414 wetrep 4415 we0 4416 ordwe 4632 wessep 4634 reg3exmidlemwe 4635 |
| Copyright terms: Public domain | W3C validator |