![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-wetr | GIF version |
Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4553). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.) |
Ref | Expression |
---|---|
df-wetr | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wwe 4361 | . 2 wff 𝑅 We 𝐴 |
4 | 1, 2 | wfr 4359 | . . 3 wff 𝑅 Fr 𝐴 |
5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
6 | 5 | cv 1363 | . . . . . . . . 9 class 𝑥 |
7 | vy | . . . . . . . . . 10 setvar 𝑦 | |
8 | 7 | cv 1363 | . . . . . . . . 9 class 𝑦 |
9 | 6, 8, 2 | wbr 4029 | . . . . . . . 8 wff 𝑥𝑅𝑦 |
10 | vz | . . . . . . . . . 10 setvar 𝑧 | |
11 | 10 | cv 1363 | . . . . . . . . 9 class 𝑧 |
12 | 8, 11, 2 | wbr 4029 | . . . . . . . 8 wff 𝑦𝑅𝑧 |
13 | 9, 12 | wa 104 | . . . . . . 7 wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) |
14 | 6, 11, 2 | wbr 4029 | . . . . . . 7 wff 𝑥𝑅𝑧 |
15 | 13, 14 | wi 4 | . . . . . 6 wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
16 | 15, 10, 1 | wral 2472 | . . . . 5 wff ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
17 | 16, 7, 1 | wral 2472 | . . . 4 wff ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
18 | 17, 5, 1 | wral 2472 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
19 | 4, 18 | wa 104 | . 2 wff (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
20 | 3, 19 | wb 105 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
Colors of variables: wff set class |
This definition is referenced by: nfwe 4386 weeq1 4387 weeq2 4388 wefr 4389 wepo 4390 wetrep 4391 we0 4392 ordwe 4608 wessep 4610 reg3exmidlemwe 4611 |
Copyright terms: Public domain | W3C validator |