| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-wetr | GIF version | ||
| Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4558). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| df-wetr | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 4366 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 4364 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1363 | . . . . . . . . 9 class 𝑥 |
| 7 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 8 | 7 | cv 1363 | . . . . . . . . 9 class 𝑦 |
| 9 | 6, 8, 2 | wbr 4034 | . . . . . . . 8 wff 𝑥𝑅𝑦 |
| 10 | vz | . . . . . . . . . 10 setvar 𝑧 | |
| 11 | 10 | cv 1363 | . . . . . . . . 9 class 𝑧 |
| 12 | 8, 11, 2 | wbr 4034 | . . . . . . . 8 wff 𝑦𝑅𝑧 |
| 13 | 9, 12 | wa 104 | . . . . . . 7 wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) |
| 14 | 6, 11, 2 | wbr 4034 | . . . . . . 7 wff 𝑥𝑅𝑧 |
| 15 | 13, 14 | wi 4 | . . . . . 6 wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 16 | 15, 10, 1 | wral 2475 | . . . . 5 wff ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 17 | 16, 7, 1 | wral 2475 | . . . 4 wff ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 18 | 17, 5, 1 | wral 2475 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 19 | 4, 18 | wa 104 | . 2 wff (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 20 | 3, 19 | wb 105 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| Colors of variables: wff set class |
| This definition is referenced by: nfwe 4391 weeq1 4392 weeq2 4393 wefr 4394 wepo 4395 wetrep 4396 we0 4397 ordwe 4613 wessep 4615 reg3exmidlemwe 4616 |
| Copyright terms: Public domain | W3C validator |