| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-wetr | GIF version | ||
| Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4612). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| df-wetr | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wwe 4420 | . 2 wff 𝑅 We 𝐴 |
| 4 | 1, 2 | wfr 4418 | . . 3 wff 𝑅 Fr 𝐴 |
| 5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
| 6 | 5 | cv 1394 | . . . . . . . . 9 class 𝑥 |
| 7 | vy | . . . . . . . . . 10 setvar 𝑦 | |
| 8 | 7 | cv 1394 | . . . . . . . . 9 class 𝑦 |
| 9 | 6, 8, 2 | wbr 4082 | . . . . . . . 8 wff 𝑥𝑅𝑦 |
| 10 | vz | . . . . . . . . . 10 setvar 𝑧 | |
| 11 | 10 | cv 1394 | . . . . . . . . 9 class 𝑧 |
| 12 | 8, 11, 2 | wbr 4082 | . . . . . . . 8 wff 𝑦𝑅𝑧 |
| 13 | 9, 12 | wa 104 | . . . . . . 7 wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) |
| 14 | 6, 11, 2 | wbr 4082 | . . . . . . 7 wff 𝑥𝑅𝑧 |
| 15 | 13, 14 | wi 4 | . . . . . 6 wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 16 | 15, 10, 1 | wral 2508 | . . . . 5 wff ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 17 | 16, 7, 1 | wral 2508 | . . . 4 wff ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 18 | 17, 5, 1 | wral 2508 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
| 19 | 4, 18 | wa 104 | . 2 wff (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 20 | 3, 19 | wb 105 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| Colors of variables: wff set class |
| This definition is referenced by: nfwe 4445 weeq1 4446 weeq2 4447 wefr 4448 wepo 4449 wetrep 4450 we0 4451 ordwe 4667 wessep 4669 reg3exmidlemwe 4670 |
| Copyright terms: Public domain | W3C validator |