Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-wetr | GIF version |
Description: Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals do not have that as seen at ordtriexmid 4498). Given excluded middle, well-ordering is usually defined to require trichotomy (and the definition of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.) |
Ref | Expression |
---|---|
df-wetr | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wwe 4308 | . 2 wff 𝑅 We 𝐴 |
4 | 1, 2 | wfr 4306 | . . 3 wff 𝑅 Fr 𝐴 |
5 | vx | . . . . . . . . . 10 setvar 𝑥 | |
6 | 5 | cv 1342 | . . . . . . . . 9 class 𝑥 |
7 | vy | . . . . . . . . . 10 setvar 𝑦 | |
8 | 7 | cv 1342 | . . . . . . . . 9 class 𝑦 |
9 | 6, 8, 2 | wbr 3982 | . . . . . . . 8 wff 𝑥𝑅𝑦 |
10 | vz | . . . . . . . . . 10 setvar 𝑧 | |
11 | 10 | cv 1342 | . . . . . . . . 9 class 𝑧 |
12 | 8, 11, 2 | wbr 3982 | . . . . . . . 8 wff 𝑦𝑅𝑧 |
13 | 9, 12 | wa 103 | . . . . . . 7 wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) |
14 | 6, 11, 2 | wbr 3982 | . . . . . . 7 wff 𝑥𝑅𝑧 |
15 | 13, 14 | wi 4 | . . . . . 6 wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
16 | 15, 10, 1 | wral 2444 | . . . . 5 wff ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
17 | 16, 7, 1 | wral 2444 | . . . 4 wff ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
18 | 17, 5, 1 | wral 2444 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
19 | 4, 18 | wa 103 | . 2 wff (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
20 | 3, 19 | wb 104 | 1 wff (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
Colors of variables: wff set class |
This definition is referenced by: nfwe 4333 weeq1 4334 weeq2 4335 wefr 4336 wepo 4337 wetrep 4338 we0 4339 ordwe 4553 wessep 4555 reg3exmidlemwe 4556 |
Copyright terms: Public domain | W3C validator |