ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmidlemwe Unicode version

Theorem reg3exmidlemwe 4612
Description: Lemma for reg3exmid 4613. Our counterexample  A satisfies  We. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmidlemwe.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
Assertion
Ref Expression
reg3exmidlemwe  |-  _E  We  A
Distinct variable group:    ph, x
Allowed substitution hint:    A( x)

Proof of Theorem reg3exmidlemwe
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfregfr 4607 . 2  |-  _E  Fr  A
2 epel 4324 . . . . . 6  |-  ( a  _E  b  <->  a  e.  b )
3 epel 4324 . . . . . 6  |-  ( b  _E  c  <->  b  e.  c )
42, 3anbi12i 460 . . . . 5  |-  ( ( a  _E  b  /\  b  _E  c )  <->  ( a  e.  b  /\  b  e.  c )
)
5 simpr 110 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
( a  e.  b  /\  b  e.  c ) )
6 elirr 4574 . . . . . . . 8  |-  -.  { (/)
}  e.  { (/) }
7 simprr 531 . . . . . . . . . 10  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
b  e.  c )
8 noel 3451 . . . . . . . . . . . . 13  |-  -.  a  e.  (/)
9 eleq2 2257 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  ( a  e.  b  <->  a  e.  (/) ) )
108, 9mtbiri 676 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  -.  a  e.  b )
11 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
a  e.  b )
1210, 11nsyl3 627 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  -.  b  =  (/) )
13 elrabi 2914 . . . . . . . . . . . . . . . 16  |-  ( b  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ( x  =  (/)  /\  ph ) ) }  ->  b  e.  { (/) ,  { (/)
} } )
14 reg3exmidlemwe.a . . . . . . . . . . . . . . . 16  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
1513, 14eleq2s 2288 . . . . . . . . . . . . . . 15  |-  ( b  e.  A  ->  b  e.  { (/) ,  { (/) } } )
16 elpri 3642 . . . . . . . . . . . . . . 15  |-  ( b  e.  { (/) ,  { (/)
} }  ->  (
b  =  (/)  \/  b  =  { (/) } ) )
1715, 16syl 14 . . . . . . . . . . . . . 14  |-  ( b  e.  A  ->  (
b  =  (/)  \/  b  =  { (/) } ) )
1817orcomd 730 . . . . . . . . . . . . 13  |-  ( b  e.  A  ->  (
b  =  { (/) }  \/  b  =  (/) ) )
19183ad2ant2 1021 . . . . . . . . . . . 12  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( b  =  { (/)
}  \/  b  =  (/) ) )
2019adantr 276 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
( b  =  { (/)
}  \/  b  =  (/) ) )
2112, 20ecased 1360 . . . . . . . . . 10  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
b  =  { (/) } )
22 noel 3451 . . . . . . . . . . . . 13  |-  -.  b  e.  (/)
23 eleq2 2257 . . . . . . . . . . . . 13  |-  ( c  =  (/)  ->  ( b  e.  c  <->  b  e.  (/) ) )
2422, 23mtbiri 676 . . . . . . . . . . . 12  |-  ( c  =  (/)  ->  -.  b  e.  c )
2524, 7nsyl3 627 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  -.  c  =  (/) )
26 elrabi 2914 . . . . . . . . . . . . . . . 16  |-  ( c  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ( x  =  (/)  /\  ph ) ) }  ->  c  e.  { (/) ,  { (/)
} } )
2726, 14eleq2s 2288 . . . . . . . . . . . . . . 15  |-  ( c  e.  A  ->  c  e.  { (/) ,  { (/) } } )
28 vex 2763 . . . . . . . . . . . . . . . 16  |-  c  e. 
_V
2928elpr 3640 . . . . . . . . . . . . . . 15  |-  ( c  e.  { (/) ,  { (/)
} }  <->  ( c  =  (/)  \/  c  =  { (/) } ) )
3027, 29sylib 122 . . . . . . . . . . . . . 14  |-  ( c  e.  A  ->  (
c  =  (/)  \/  c  =  { (/) } ) )
3130orcomd 730 . . . . . . . . . . . . 13  |-  ( c  e.  A  ->  (
c  =  { (/) }  \/  c  =  (/) ) )
32313ad2ant3 1022 . . . . . . . . . . . 12  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( c  =  { (/)
}  \/  c  =  (/) ) )
3332adantr 276 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
( c  =  { (/)
}  \/  c  =  (/) ) )
3425, 33ecased 1360 . . . . . . . . . 10  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
c  =  { (/) } )
357, 21, 343eltr3d 2276 . . . . . . . . 9  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  { (/) }  e.  { (/)
} )
3635ex 115 . . . . . . . 8  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( ( a  e.  b  /\  b  e.  c )  ->  { (/) }  e.  { (/) } ) )
376, 36mtoi 665 . . . . . . 7  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  -.  ( a  e.  b  /\  b  e.  c ) )
3837adantr 276 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  -.  ( a  e.  b  /\  b  e.  c ) )
395, 38pm2.21dd 621 . . . . 5  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
a  _E  c )
404, 39sylan2b 287 . . . 4  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  _E  b  /\  b  _E  c ) )  -> 
a  _E  c )
4140ex 115 . . 3  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( ( a  _E  b  /\  b  _E  c )  ->  a  _E  c ) )
4241rgen3 2581 . 2  |-  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( (
a  _E  b  /\  b  _E  c )  ->  a  _E  c )
43 df-wetr 4366 . 2  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( (
a  _E  b  /\  b  _E  c )  ->  a  _E  c ) ) )
441, 42, 43mpbir2an 944 1  |-  _E  We  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476   (/)c0 3447   {csn 3619   {cpr 3620   class class class wbr 4030    _E cep 4319    Fr wfr 4360    We wwe 4362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-eprel 4321  df-frfor 4363  df-frind 4364  df-wetr 4366
This theorem is referenced by:  reg3exmid  4613
  Copyright terms: Public domain W3C validator