ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmidlemwe Unicode version

Theorem reg3exmidlemwe 4645
Description: Lemma for reg3exmid 4646. Our counterexample  A satisfies  We. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmidlemwe.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
Assertion
Ref Expression
reg3exmidlemwe  |-  _E  We  A
Distinct variable group:    ph, x
Allowed substitution hint:    A( x)

Proof of Theorem reg3exmidlemwe
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfregfr 4640 . 2  |-  _E  Fr  A
2 epel 4357 . . . . . 6  |-  ( a  _E  b  <->  a  e.  b )
3 epel 4357 . . . . . 6  |-  ( b  _E  c  <->  b  e.  c )
42, 3anbi12i 460 . . . . 5  |-  ( ( a  _E  b  /\  b  _E  c )  <->  ( a  e.  b  /\  b  e.  c )
)
5 simpr 110 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
( a  e.  b  /\  b  e.  c ) )
6 elirr 4607 . . . . . . . 8  |-  -.  { (/)
}  e.  { (/) }
7 simprr 531 . . . . . . . . . 10  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
b  e.  c )
8 noel 3472 . . . . . . . . . . . . 13  |-  -.  a  e.  (/)
9 eleq2 2271 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  ( a  e.  b  <->  a  e.  (/) ) )
108, 9mtbiri 677 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  -.  a  e.  b )
11 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
a  e.  b )
1210, 11nsyl3 627 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  -.  b  =  (/) )
13 elrabi 2933 . . . . . . . . . . . . . . . 16  |-  ( b  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ( x  =  (/)  /\  ph ) ) }  ->  b  e.  { (/) ,  { (/)
} } )
14 reg3exmidlemwe.a . . . . . . . . . . . . . . . 16  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
1513, 14eleq2s 2302 . . . . . . . . . . . . . . 15  |-  ( b  e.  A  ->  b  e.  { (/) ,  { (/) } } )
16 elpri 3666 . . . . . . . . . . . . . . 15  |-  ( b  e.  { (/) ,  { (/)
} }  ->  (
b  =  (/)  \/  b  =  { (/) } ) )
1715, 16syl 14 . . . . . . . . . . . . . 14  |-  ( b  e.  A  ->  (
b  =  (/)  \/  b  =  { (/) } ) )
1817orcomd 731 . . . . . . . . . . . . 13  |-  ( b  e.  A  ->  (
b  =  { (/) }  \/  b  =  (/) ) )
19183ad2ant2 1022 . . . . . . . . . . . 12  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( b  =  { (/)
}  \/  b  =  (/) ) )
2019adantr 276 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
( b  =  { (/)
}  \/  b  =  (/) ) )
2112, 20ecased 1362 . . . . . . . . . 10  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
b  =  { (/) } )
22 noel 3472 . . . . . . . . . . . . 13  |-  -.  b  e.  (/)
23 eleq2 2271 . . . . . . . . . . . . 13  |-  ( c  =  (/)  ->  ( b  e.  c  <->  b  e.  (/) ) )
2422, 23mtbiri 677 . . . . . . . . . . . 12  |-  ( c  =  (/)  ->  -.  b  e.  c )
2524, 7nsyl3 627 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  -.  c  =  (/) )
26 elrabi 2933 . . . . . . . . . . . . . . . 16  |-  ( c  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ( x  =  (/)  /\  ph ) ) }  ->  c  e.  { (/) ,  { (/)
} } )
2726, 14eleq2s 2302 . . . . . . . . . . . . . . 15  |-  ( c  e.  A  ->  c  e.  { (/) ,  { (/) } } )
28 vex 2779 . . . . . . . . . . . . . . . 16  |-  c  e. 
_V
2928elpr 3664 . . . . . . . . . . . . . . 15  |-  ( c  e.  { (/) ,  { (/)
} }  <->  ( c  =  (/)  \/  c  =  { (/) } ) )
3027, 29sylib 122 . . . . . . . . . . . . . 14  |-  ( c  e.  A  ->  (
c  =  (/)  \/  c  =  { (/) } ) )
3130orcomd 731 . . . . . . . . . . . . 13  |-  ( c  e.  A  ->  (
c  =  { (/) }  \/  c  =  (/) ) )
32313ad2ant3 1023 . . . . . . . . . . . 12  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( c  =  { (/)
}  \/  c  =  (/) ) )
3332adantr 276 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
( c  =  { (/)
}  \/  c  =  (/) ) )
3425, 33ecased 1362 . . . . . . . . . 10  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
c  =  { (/) } )
357, 21, 343eltr3d 2290 . . . . . . . . 9  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  { (/) }  e.  { (/)
} )
3635ex 115 . . . . . . . 8  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( ( a  e.  b  /\  b  e.  c )  ->  { (/) }  e.  { (/) } ) )
376, 36mtoi 666 . . . . . . 7  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  -.  ( a  e.  b  /\  b  e.  c ) )
3837adantr 276 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  -.  ( a  e.  b  /\  b  e.  c ) )
395, 38pm2.21dd 621 . . . . 5  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
a  _E  c )
404, 39sylan2b 287 . . . 4  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  _E  b  /\  b  _E  c ) )  -> 
a  _E  c )
4140ex 115 . . 3  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( ( a  _E  b  /\  b  _E  c )  ->  a  _E  c ) )
4241rgen3 2595 . 2  |-  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( (
a  _E  b  /\  b  _E  c )  ->  a  _E  c )
43 df-wetr 4399 . 2  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( (
a  _E  b  /\  b  _E  c )  ->  a  _E  c ) ) )
441, 42, 43mpbir2an 945 1  |-  _E  We  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   (/)c0 3468   {csn 3643   {cpr 3644   class class class wbr 4059    _E cep 4352    Fr wfr 4393    We wwe 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-eprel 4354  df-frfor 4396  df-frind 4397  df-wetr 4399
This theorem is referenced by:  reg3exmid  4646
  Copyright terms: Public domain W3C validator