ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmidlemwe Unicode version

Theorem reg3exmidlemwe 4627
Description: Lemma for reg3exmid 4628. Our counterexample  A satisfies  We. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmidlemwe.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
Assertion
Ref Expression
reg3exmidlemwe  |-  _E  We  A
Distinct variable group:    ph, x
Allowed substitution hint:    A( x)

Proof of Theorem reg3exmidlemwe
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfregfr 4622 . 2  |-  _E  Fr  A
2 epel 4339 . . . . . 6  |-  ( a  _E  b  <->  a  e.  b )
3 epel 4339 . . . . . 6  |-  ( b  _E  c  <->  b  e.  c )
42, 3anbi12i 460 . . . . 5  |-  ( ( a  _E  b  /\  b  _E  c )  <->  ( a  e.  b  /\  b  e.  c )
)
5 simpr 110 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
( a  e.  b  /\  b  e.  c ) )
6 elirr 4589 . . . . . . . 8  |-  -.  { (/)
}  e.  { (/) }
7 simprr 531 . . . . . . . . . 10  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
b  e.  c )
8 noel 3464 . . . . . . . . . . . . 13  |-  -.  a  e.  (/)
9 eleq2 2269 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  ( a  e.  b  <->  a  e.  (/) ) )
108, 9mtbiri 677 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  -.  a  e.  b )
11 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
a  e.  b )
1210, 11nsyl3 627 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  -.  b  =  (/) )
13 elrabi 2926 . . . . . . . . . . . . . . . 16  |-  ( b  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ( x  =  (/)  /\  ph ) ) }  ->  b  e.  { (/) ,  { (/)
} } )
14 reg3exmidlemwe.a . . . . . . . . . . . . . . . 16  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  (
x  =  (/)  /\  ph ) ) }
1513, 14eleq2s 2300 . . . . . . . . . . . . . . 15  |-  ( b  e.  A  ->  b  e.  { (/) ,  { (/) } } )
16 elpri 3656 . . . . . . . . . . . . . . 15  |-  ( b  e.  { (/) ,  { (/)
} }  ->  (
b  =  (/)  \/  b  =  { (/) } ) )
1715, 16syl 14 . . . . . . . . . . . . . 14  |-  ( b  e.  A  ->  (
b  =  (/)  \/  b  =  { (/) } ) )
1817orcomd 731 . . . . . . . . . . . . 13  |-  ( b  e.  A  ->  (
b  =  { (/) }  \/  b  =  (/) ) )
19183ad2ant2 1022 . . . . . . . . . . . 12  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( b  =  { (/)
}  \/  b  =  (/) ) )
2019adantr 276 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
( b  =  { (/)
}  \/  b  =  (/) ) )
2112, 20ecased 1362 . . . . . . . . . 10  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
b  =  { (/) } )
22 noel 3464 . . . . . . . . . . . . 13  |-  -.  b  e.  (/)
23 eleq2 2269 . . . . . . . . . . . . 13  |-  ( c  =  (/)  ->  ( b  e.  c  <->  b  e.  (/) ) )
2422, 23mtbiri 677 . . . . . . . . . . . 12  |-  ( c  =  (/)  ->  -.  b  e.  c )
2524, 7nsyl3 627 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  -.  c  =  (/) )
26 elrabi 2926 . . . . . . . . . . . . . . . 16  |-  ( c  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  ( x  =  (/)  /\  ph ) ) }  ->  c  e.  { (/) ,  { (/)
} } )
2726, 14eleq2s 2300 . . . . . . . . . . . . . . 15  |-  ( c  e.  A  ->  c  e.  { (/) ,  { (/) } } )
28 vex 2775 . . . . . . . . . . . . . . . 16  |-  c  e. 
_V
2928elpr 3654 . . . . . . . . . . . . . . 15  |-  ( c  e.  { (/) ,  { (/)
} }  <->  ( c  =  (/)  \/  c  =  { (/) } ) )
3027, 29sylib 122 . . . . . . . . . . . . . 14  |-  ( c  e.  A  ->  (
c  =  (/)  \/  c  =  { (/) } ) )
3130orcomd 731 . . . . . . . . . . . . 13  |-  ( c  e.  A  ->  (
c  =  { (/) }  \/  c  =  (/) ) )
32313ad2ant3 1023 . . . . . . . . . . . 12  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( c  =  { (/)
}  \/  c  =  (/) ) )
3332adantr 276 . . . . . . . . . . 11  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
( c  =  { (/)
}  \/  c  =  (/) ) )
3425, 33ecased 1362 . . . . . . . . . 10  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
c  =  { (/) } )
357, 21, 343eltr3d 2288 . . . . . . . . 9  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  { (/) }  e.  { (/)
} )
3635ex 115 . . . . . . . 8  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( ( a  e.  b  /\  b  e.  c )  ->  { (/) }  e.  { (/) } ) )
376, 36mtoi 666 . . . . . . 7  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  -.  ( a  e.  b  /\  b  e.  c ) )
3837adantr 276 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  ->  -.  ( a  e.  b  /\  b  e.  c ) )
395, 38pm2.21dd 621 . . . . 5  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  e.  b  /\  b  e.  c ) )  -> 
a  _E  c )
404, 39sylan2b 287 . . . 4  |-  ( ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A
)  /\  ( a  _E  b  /\  b  _E  c ) )  -> 
a  _E  c )
4140ex 115 . . 3  |-  ( ( a  e.  A  /\  b  e.  A  /\  c  e.  A )  ->  ( ( a  _E  b  /\  b  _E  c )  ->  a  _E  c ) )
4241rgen3 2593 . 2  |-  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( (
a  _E  b  /\  b  _E  c )  ->  a  _E  c )
43 df-wetr 4381 . 2  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( (
a  _E  b  /\  b  _E  c )  ->  a  _E  c ) ) )
441, 42, 43mpbir2an 945 1  |-  _E  We  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488   (/)c0 3460   {csn 3633   {cpr 3634   class class class wbr 4044    _E cep 4334    Fr wfr 4375    We wwe 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-eprel 4336  df-frfor 4378  df-frind 4379  df-wetr 4381
This theorem is referenced by:  reg3exmid  4628
  Copyright terms: Public domain W3C validator