ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seex Unicode version

Theorem seex 4320
Description: The  R-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.)
Assertion
Ref Expression
seex  |-  ( ( R Se  A  /\  B  e.  A )  ->  { x  e.  A  |  x R B }  e.  _V )
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem seex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-se 4318 . 2  |-  ( R Se  A  <->  A. y  e.  A  { x  e.  A  |  x R y }  e.  _V )
2 breq2 3993 . . . . 5  |-  ( y  =  B  ->  (
x R y  <->  x R B ) )
32rabbidv 2719 . . . 4  |-  ( y  =  B  ->  { x  e.  A  |  x R y }  =  { x  e.  A  |  x R B }
)
43eleq1d 2239 . . 3  |-  ( y  =  B  ->  ( { x  e.  A  |  x R y }  e.  _V  <->  { x  e.  A  |  x R B }  e.  _V ) )
54rspccva 2833 . 2  |-  ( ( A. y  e.  A  { x  e.  A  |  x R y }  e.  _V  /\  B  e.  A )  ->  { x  e.  A  |  x R B }  e.  _V )
61, 5sylanb 282 1  |-  ( ( R Se  A  /\  B  e.  A )  ->  { x  e.  A  |  x R B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730   class class class wbr 3989   Se wse 4314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-se 4318
This theorem is referenced by:  sefvex  5517
  Copyright terms: Public domain W3C validator