ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seex Unicode version

Theorem seex 4366
Description: The  R-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.)
Assertion
Ref Expression
seex  |-  ( ( R Se  A  /\  B  e.  A )  ->  { x  e.  A  |  x R B }  e.  _V )
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem seex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-se 4364 . 2  |-  ( R Se  A  <->  A. y  e.  A  { x  e.  A  |  x R y }  e.  _V )
2 breq2 4033 . . . . 5  |-  ( y  =  B  ->  (
x R y  <->  x R B ) )
32rabbidv 2749 . . . 4  |-  ( y  =  B  ->  { x  e.  A  |  x R y }  =  { x  e.  A  |  x R B }
)
43eleq1d 2262 . . 3  |-  ( y  =  B  ->  ( { x  e.  A  |  x R y }  e.  _V  <->  { x  e.  A  |  x R B }  e.  _V ) )
54rspccva 2863 . 2  |-  ( ( A. y  e.  A  { x  e.  A  |  x R y }  e.  _V  /\  B  e.  A )  ->  { x  e.  A  |  x R B }  e.  _V )
61, 5sylanb 284 1  |-  ( ( R Se  A  /\  B  e.  A )  ->  { x  e.  A  |  x R B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760   class class class wbr 4029   Se wse 4360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-se 4364
This theorem is referenced by:  sefvex  5575
  Copyright terms: Public domain W3C validator