ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seex Unicode version

Theorem seex 4313
Description: The  R-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.)
Assertion
Ref Expression
seex  |-  ( ( R Se  A  /\  B  e.  A )  ->  { x  e.  A  |  x R B }  e.  _V )
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem seex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-se 4311 . 2  |-  ( R Se  A  <->  A. y  e.  A  { x  e.  A  |  x R y }  e.  _V )
2 breq2 3986 . . . . 5  |-  ( y  =  B  ->  (
x R y  <->  x R B ) )
32rabbidv 2715 . . . 4  |-  ( y  =  B  ->  { x  e.  A  |  x R y }  =  { x  e.  A  |  x R B }
)
43eleq1d 2235 . . 3  |-  ( y  =  B  ->  ( { x  e.  A  |  x R y }  e.  _V  <->  { x  e.  A  |  x R B }  e.  _V ) )
54rspccva 2829 . 2  |-  ( ( A. y  e.  A  { x  e.  A  |  x R y }  e.  _V  /\  B  e.  A )  ->  { x  e.  A  |  x R B }  e.  _V )
61, 5sylanb 282 1  |-  ( ( R Se  A  /\  B  e.  A )  ->  { x  e.  A  |  x R B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   {crab 2448   _Vcvv 2726   class class class wbr 3982   Se wse 4307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-se 4311
This theorem is referenced by:  sefvex  5507
  Copyright terms: Public domain W3C validator