ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordwe Unicode version

Theorem ordwe 4668
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe  |-  ( Ord 
A  ->  _E  We  A )

Proof of Theorem ordwe
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordfr 4667 . 2  |-  ( Ord 
A  ->  _E  Fr  A )
2 ordelord 4472 . . . . 5  |-  ( ( Ord  A  /\  z  e.  A )  ->  Ord  z )
323ad2antr3 1188 . . . 4  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  ->  Ord  z )
4 ordtr1 4479 . . . . 5  |-  ( Ord  z  ->  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
5 epel 4383 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
6 epel 4383 . . . . . 6  |-  ( y  _E  z  <->  y  e.  z )
75, 6anbi12i 460 . . . . 5  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
8 epel 4383 . . . . 5  |-  ( x  _E  z  <->  x  e.  z )
94, 7, 83imtr4g 205 . . . 4  |-  ( Ord  z  ->  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
103, 9syl 14 . . 3  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  ->  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1110ralrimivvva 2613 . 2  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
12 df-wetr 4425 . 2  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
131, 11, 12sylanbrc 417 1  |-  ( Ord 
A  ->  _E  We  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    e. wcel 2200   A.wral 2508   class class class wbr 4083    _E cep 4378    Fr wfr 4419    We wwe 4421   Ord word 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-tr 4183  df-eprel 4380  df-frfor 4422  df-frind 4423  df-wetr 4425  df-iord 4457
This theorem is referenced by:  nnwetri  7078
  Copyright terms: Public domain W3C validator