ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordwe Unicode version

Theorem ordwe 4553
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe  |-  ( Ord 
A  ->  _E  We  A )

Proof of Theorem ordwe
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordfr 4552 . 2  |-  ( Ord 
A  ->  _E  Fr  A )
2 ordelord 4359 . . . . 5  |-  ( ( Ord  A  /\  z  e.  A )  ->  Ord  z )
323ad2antr3 1154 . . . 4  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  ->  Ord  z )
4 ordtr1 4366 . . . . 5  |-  ( Ord  z  ->  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
5 epel 4270 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
6 epel 4270 . . . . . 6  |-  ( y  _E  z  <->  y  e.  z )
75, 6anbi12i 456 . . . . 5  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
8 epel 4270 . . . . 5  |-  ( x  _E  z  <->  x  e.  z )
94, 7, 83imtr4g 204 . . . 4  |-  ( Ord  z  ->  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
103, 9syl 14 . . 3  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  ->  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1110ralrimivvva 2549 . 2  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
12 df-wetr 4312 . 2  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
131, 11, 12sylanbrc 414 1  |-  ( Ord 
A  ->  _E  We  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    e. wcel 2136   A.wral 2444   class class class wbr 3982    _E cep 4265    Fr wfr 4306    We wwe 4308   Ord word 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-tr 4081  df-eprel 4267  df-frfor 4309  df-frind 4310  df-wetr 4312  df-iord 4344
This theorem is referenced by:  nnwetri  6881
  Copyright terms: Public domain W3C validator