ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordwe Unicode version

Theorem ordwe 4613
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe  |-  ( Ord 
A  ->  _E  We  A )

Proof of Theorem ordwe
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordfr 4612 . 2  |-  ( Ord 
A  ->  _E  Fr  A )
2 ordelord 4417 . . . . 5  |-  ( ( Ord  A  /\  z  e.  A )  ->  Ord  z )
323ad2antr3 1166 . . . 4  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  ->  Ord  z )
4 ordtr1 4424 . . . . 5  |-  ( Ord  z  ->  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
5 epel 4328 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
6 epel 4328 . . . . . 6  |-  ( y  _E  z  <->  y  e.  z )
75, 6anbi12i 460 . . . . 5  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
8 epel 4328 . . . . 5  |-  ( x  _E  z  <->  x  e.  z )
94, 7, 83imtr4g 205 . . . 4  |-  ( Ord  z  ->  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
103, 9syl 14 . . 3  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  ->  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1110ralrimivvva 2580 . 2  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
12 df-wetr 4370 . 2  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
131, 11, 12sylanbrc 417 1  |-  ( Ord 
A  ->  _E  We  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   A.wral 2475   class class class wbr 4034    _E cep 4323    Fr wfr 4364    We wwe 4366   Ord word 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-tr 4133  df-eprel 4325  df-frfor 4367  df-frind 4368  df-wetr 4370  df-iord 4402
This theorem is referenced by:  nnwetri  6986
  Copyright terms: Public domain W3C validator