Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordwe | Unicode version |
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordfr 4528 | . 2 | |
2 | ordelord 4336 | . . . . 5 | |
3 | 2 | 3ad2antr3 1149 | . . . 4 |
4 | ordtr1 4343 | . . . . 5 | |
5 | epel 4247 | . . . . . 6 | |
6 | epel 4247 | . . . . . 6 | |
7 | 5, 6 | anbi12i 456 | . . . . 5 |
8 | epel 4247 | . . . . 5 | |
9 | 4, 7, 8 | 3imtr4g 204 | . . . 4 |
10 | 3, 9 | syl 14 | . . 3 |
11 | 10 | ralrimivvva 2537 | . 2 |
12 | df-wetr 4289 | . 2 | |
13 | 1, 11, 12 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wcel 2125 wral 2432 class class class wbr 3961 cep 4242 wfr 4283 wwe 4285 word 4317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-tr 4059 df-eprel 4244 df-frfor 4286 df-frind 4287 df-wetr 4289 df-iord 4321 |
This theorem is referenced by: nnwetri 6849 |
Copyright terms: Public domain | W3C validator |