ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordwe Unicode version

Theorem ordwe 4608
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe  |-  ( Ord 
A  ->  _E  We  A )

Proof of Theorem ordwe
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordfr 4607 . 2  |-  ( Ord 
A  ->  _E  Fr  A )
2 ordelord 4412 . . . . 5  |-  ( ( Ord  A  /\  z  e.  A )  ->  Ord  z )
323ad2antr3 1166 . . . 4  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  ->  Ord  z )
4 ordtr1 4419 . . . . 5  |-  ( Ord  z  ->  ( (
x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
5 epel 4323 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
6 epel 4323 . . . . . 6  |-  ( y  _E  z  <->  y  e.  z )
75, 6anbi12i 460 . . . . 5  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
8 epel 4323 . . . . 5  |-  ( x  _E  z  <->  x  e.  z )
94, 7, 83imtr4g 205 . . . 4  |-  ( Ord  z  ->  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
103, 9syl 14 . . 3  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
)  ->  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1110ralrimivvva 2577 . 2  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
12 df-wetr 4365 . 2  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
131, 11, 12sylanbrc 417 1  |-  ( Ord 
A  ->  _E  We  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2164   A.wral 2472   class class class wbr 4029    _E cep 4318    Fr wfr 4359    We wwe 4361   Ord word 4393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-tr 4128  df-eprel 4320  df-frfor 4362  df-frind 4363  df-wetr 4365  df-iord 4397
This theorem is referenced by:  nnwetri  6972
  Copyright terms: Public domain W3C validator