| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wessep | Unicode version | ||
| Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.) |
| Ref | Expression |
|---|---|
| wessep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3195 |
. . . . . . 7
| |
| 2 | ssel 3195 |
. . . . . . 7
| |
| 3 | ssel 3195 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | 3anim123d 1332 |
. . . . . 6
|
| 5 | 4 | adantl 277 |
. . . . 5
|
| 6 | 5 | imdistani 445 |
. . . 4
|
| 7 | wetrep 4425 |
. . . . . 6
| |
| 8 | 7 | adantlr 477 |
. . . . 5
|
| 9 | epel 4357 |
. . . . . 6
| |
| 10 | epel 4357 |
. . . . . 6
| |
| 11 | 9, 10 | anbi12i 460 |
. . . . 5
|
| 12 | epel 4357 |
. . . . 5
| |
| 13 | 8, 11, 12 | 3imtr4g 205 |
. . . 4
|
| 14 | 6, 13 | syl 14 |
. . 3
|
| 15 | 14 | ralrimivvva 2591 |
. 2
|
| 16 | zfregfr 4640 |
. . 3
| |
| 17 | df-wetr 4399 |
. . 3
| |
| 18 | 16, 17 | mpbiran 943 |
. 2
|
| 19 | 15, 18 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-eprel 4354 df-frfor 4396 df-frind 4397 df-wetr 4399 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |