Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > wessep | Unicode version |
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.) |
Ref | Expression |
---|---|
wessep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . . . . 7 | |
2 | ssel 3141 | . . . . . . 7 | |
3 | ssel 3141 | . . . . . . 7 | |
4 | 1, 2, 3 | 3anim123d 1314 | . . . . . 6 |
5 | 4 | adantl 275 | . . . . 5 |
6 | 5 | imdistani 443 | . . . 4 |
7 | wetrep 4345 | . . . . . 6 | |
8 | 7 | adantlr 474 | . . . . 5 |
9 | epel 4277 | . . . . . 6 | |
10 | epel 4277 | . . . . . 6 | |
11 | 9, 10 | anbi12i 457 | . . . . 5 |
12 | epel 4277 | . . . . 5 | |
13 | 8, 11, 12 | 3imtr4g 204 | . . . 4 |
14 | 6, 13 | syl 14 | . . 3 |
15 | 14 | ralrimivvva 2553 | . 2 |
16 | zfregfr 4558 | . . 3 | |
17 | df-wetr 4319 | . . 3 | |
18 | 16, 17 | mpbiran 935 | . 2 |
19 | 15, 18 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wcel 2141 wral 2448 wss 3121 class class class wbr 3989 cep 4272 wfr 4313 wwe 4315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-eprel 4274 df-frfor 4316 df-frind 4317 df-wetr 4319 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |