ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wessep Unicode version

Theorem wessep 4644
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
wessep  |-  ( (  _E  We  A  /\  B  C_  A )  ->  _E  We  B )

Proof of Theorem wessep
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3195 . . . . . . 7  |-  ( B 
C_  A  ->  (
x  e.  B  ->  x  e.  A )
)
2 ssel 3195 . . . . . . 7  |-  ( B 
C_  A  ->  (
y  e.  B  -> 
y  e.  A ) )
3 ssel 3195 . . . . . . 7  |-  ( B 
C_  A  ->  (
z  e.  B  -> 
z  e.  A ) )
41, 2, 33anim123d 1332 . . . . . 6  |-  ( B 
C_  A  ->  (
( x  e.  B  /\  y  e.  B  /\  z  e.  B
)  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) ) )
54adantl 277 . . . . 5  |-  ( (  _E  We  A  /\  B  C_  A )  -> 
( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
) )
65imdistani 445 . . . 4  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( (  _E  We  A  /\  B  C_  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) ) )
7 wetrep 4425 . . . . . 6  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
87adantlr 477 . . . . 5  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
9 epel 4357 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
10 epel 4357 . . . . . 6  |-  ( y  _E  z  <->  y  e.  z )
119, 10anbi12i 460 . . . . 5  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
12 epel 4357 . . . . 5  |-  ( x  _E  z  <->  x  e.  z )
138, 11, 123imtr4g 205 . . . 4  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
146, 13syl 14 . . 3  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1514ralrimivvva 2591 . 2  |-  ( (  _E  We  A  /\  B  C_  A )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
16 zfregfr 4640 . . 3  |-  _E  Fr  B
17 df-wetr 4399 . . 3  |-  (  _E  We  B  <->  (  _E  Fr  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
1816, 17mpbiran 943 . 2  |-  (  _E  We  B  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1915, 18sylibr 134 1  |-  ( (  _E  We  A  /\  B  C_  A )  ->  _E  We  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2178   A.wral 2486    C_ wss 3174   class class class wbr 4059    _E cep 4352    Fr wfr 4393    We wwe 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-eprel 4354  df-frfor 4396  df-frind 4397  df-wetr 4399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator