| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wessep | Unicode version | ||
| Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.) |
| Ref | Expression |
|---|---|
| wessep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . . . . . 7
| |
| 2 | ssel 3187 |
. . . . . . 7
| |
| 3 | ssel 3187 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | 3anim123d 1332 |
. . . . . 6
|
| 5 | 4 | adantl 277 |
. . . . 5
|
| 6 | 5 | imdistani 445 |
. . . 4
|
| 7 | wetrep 4407 |
. . . . . 6
| |
| 8 | 7 | adantlr 477 |
. . . . 5
|
| 9 | epel 4339 |
. . . . . 6
| |
| 10 | epel 4339 |
. . . . . 6
| |
| 11 | 9, 10 | anbi12i 460 |
. . . . 5
|
| 12 | epel 4339 |
. . . . 5
| |
| 13 | 8, 11, 12 | 3imtr4g 205 |
. . . 4
|
| 14 | 6, 13 | syl 14 |
. . 3
|
| 15 | 14 | ralrimivvva 2589 |
. 2
|
| 16 | zfregfr 4622 |
. . 3
| |
| 17 | df-wetr 4381 |
. . 3
| |
| 18 | 16, 17 | mpbiran 943 |
. 2
|
| 19 | 15, 18 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-eprel 4336 df-frfor 4378 df-frind 4379 df-wetr 4381 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |