ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wessep Unicode version

Theorem wessep 4560
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
wessep  |-  ( (  _E  We  A  /\  B  C_  A )  ->  _E  We  B )

Proof of Theorem wessep
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3141 . . . . . . 7  |-  ( B 
C_  A  ->  (
x  e.  B  ->  x  e.  A )
)
2 ssel 3141 . . . . . . 7  |-  ( B 
C_  A  ->  (
y  e.  B  -> 
y  e.  A ) )
3 ssel 3141 . . . . . . 7  |-  ( B 
C_  A  ->  (
z  e.  B  -> 
z  e.  A ) )
41, 2, 33anim123d 1314 . . . . . 6  |-  ( B 
C_  A  ->  (
( x  e.  B  /\  y  e.  B  /\  z  e.  B
)  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) ) )
54adantl 275 . . . . 5  |-  ( (  _E  We  A  /\  B  C_  A )  -> 
( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
) )
65imdistani 443 . . . 4  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( (  _E  We  A  /\  B  C_  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) ) )
7 wetrep 4343 . . . . . 6  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
87adantlr 474 . . . . 5  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
9 epel 4275 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
10 epel 4275 . . . . . 6  |-  ( y  _E  z  <->  y  e.  z )
119, 10anbi12i 457 . . . . 5  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
12 epel 4275 . . . . 5  |-  ( x  _E  z  <->  x  e.  z )
138, 11, 123imtr4g 204 . . . 4  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
146, 13syl 14 . . 3  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1514ralrimivvva 2553 . 2  |-  ( (  _E  We  A  /\  B  C_  A )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
16 zfregfr 4556 . . 3  |-  _E  Fr  B
17 df-wetr 4317 . . 3  |-  (  _E  We  B  <->  (  _E  Fr  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
1816, 17mpbiran 935 . 2  |-  (  _E  We  B  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1915, 18sylibr 133 1  |-  ( (  _E  We  A  /\  B  C_  A )  ->  _E  We  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    e. wcel 2141   A.wral 2448    C_ wss 3121   class class class wbr 3987    _E cep 4270    Fr wfr 4311    We wwe 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-eprel 4272  df-frfor 4314  df-frind 4315  df-wetr 4317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator