ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wessep Unicode version

Theorem wessep 4626
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
wessep  |-  ( (  _E  We  A  /\  B  C_  A )  ->  _E  We  B )

Proof of Theorem wessep
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3187 . . . . . . 7  |-  ( B 
C_  A  ->  (
x  e.  B  ->  x  e.  A )
)
2 ssel 3187 . . . . . . 7  |-  ( B 
C_  A  ->  (
y  e.  B  -> 
y  e.  A ) )
3 ssel 3187 . . . . . . 7  |-  ( B 
C_  A  ->  (
z  e.  B  -> 
z  e.  A ) )
41, 2, 33anim123d 1332 . . . . . 6  |-  ( B 
C_  A  ->  (
( x  e.  B  /\  y  e.  B  /\  z  e.  B
)  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) ) )
54adantl 277 . . . . 5  |-  ( (  _E  We  A  /\  B  C_  A )  -> 
( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
) )
65imdistani 445 . . . 4  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( (  _E  We  A  /\  B  C_  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) ) )
7 wetrep 4407 . . . . . 6  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
87adantlr 477 . . . . 5  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
9 epel 4339 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
10 epel 4339 . . . . . 6  |-  ( y  _E  z  <->  y  e.  z )
119, 10anbi12i 460 . . . . 5  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
12 epel 4339 . . . . 5  |-  ( x  _E  z  <->  x  e.  z )
138, 11, 123imtr4g 205 . . . 4  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
146, 13syl 14 . . 3  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1514ralrimivvva 2589 . 2  |-  ( (  _E  We  A  /\  B  C_  A )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
16 zfregfr 4622 . . 3  |-  _E  Fr  B
17 df-wetr 4381 . . 3  |-  (  _E  We  B  <->  (  _E  Fr  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
1816, 17mpbiran 943 . 2  |-  (  _E  We  B  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1915, 18sylibr 134 1  |-  ( (  _E  We  A  /\  B  C_  A )  ->  _E  We  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2176   A.wral 2484    C_ wss 3166   class class class wbr 4044    _E cep 4334    Fr wfr 4375    We wwe 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-eprel 4336  df-frfor 4378  df-frind 4379  df-wetr 4381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator