Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > wessep | Unicode version |
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.) |
Ref | Expression |
---|---|
wessep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . . . . 7 | |
2 | ssel 3136 | . . . . . . 7 | |
3 | ssel 3136 | . . . . . . 7 | |
4 | 1, 2, 3 | 3anim123d 1309 | . . . . . 6 |
5 | 4 | adantl 275 | . . . . 5 |
6 | 5 | imdistani 442 | . . . 4 |
7 | wetrep 4338 | . . . . . 6 | |
8 | 7 | adantlr 469 | . . . . 5 |
9 | epel 4270 | . . . . . 6 | |
10 | epel 4270 | . . . . . 6 | |
11 | 9, 10 | anbi12i 456 | . . . . 5 |
12 | epel 4270 | . . . . 5 | |
13 | 8, 11, 12 | 3imtr4g 204 | . . . 4 |
14 | 6, 13 | syl 14 | . . 3 |
15 | 14 | ralrimivvva 2549 | . 2 |
16 | zfregfr 4551 | . . 3 | |
17 | df-wetr 4312 | . . 3 | |
18 | 16, 17 | mpbiran 930 | . 2 |
19 | 15, 18 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wcel 2136 wral 2444 wss 3116 class class class wbr 3982 cep 4265 wfr 4306 wwe 4308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-eprel 4267 df-frfor 4309 df-frind 4310 df-wetr 4312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |