ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiin2 Unicode version

Theorem dfiin2 3816
Description: Alternate definition of indexed intersection when  B is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Hypothesis
Ref Expression
dfiun2.1  |-  B  e. 
_V
Assertion
Ref Expression
dfiin2  |-  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B }
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dfiin2
StepHypRef Expression
1 dfiin2g 3814 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
2 dfiun2.1 . . 3  |-  B  e. 
_V
32a1i 9 . 2  |-  ( x  e.  A  ->  B  e.  _V )
41, 3mprg 2464 1  |-  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1314    e. wcel 1463   {cab 2101   E.wrex 2392   _Vcvv 2658   |^|cint 3739   |^|_ciin 3782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-int 3740  df-iin 3784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator