![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfiin2 | GIF version |
Description: Alternate definition of indexed intersection when 𝐵 is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dfiun2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfiin2 | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin2g 3763 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | dfiun2.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ V) |
4 | 1, 3 | mprg 2432 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 {cab 2074 ∃wrex 2360 Vcvv 2619 ∩ cint 3688 ∩ ciin 3731 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-int 3689 df-iin 3733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |