ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difssd Unicode version

Theorem difssd 3125
Description: A difference of two classes is contained in the minuend. Deduction form of difss 3124. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difssd  |-  ( ph  ->  ( A  \  B
)  C_  A )

Proof of Theorem difssd
StepHypRef Expression
1 difss 3124 . 2  |-  ( A 
\  B )  C_  A
21a1i 9 1  |-  ( ph  ->  ( A  \  B
)  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 2994    C_ wss 2997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-dif 2999  df-in 3003  df-ss 3010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator