ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difssd Unicode version

Theorem difssd 3245
Description: A difference of two classes is contained in the minuend. Deduction form of difss 3244. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difssd  |-  ( ph  ->  ( A  \  B
)  C_  A )

Proof of Theorem difssd
StepHypRef Expression
1 difss 3244 . 2  |-  ( A 
\  B )  C_  A
21a1i 9 1  |-  ( ph  ->  ( A  \  B
)  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3109    C_ wss 3112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2724  df-dif 3114  df-in 3118  df-ss 3125
This theorem is referenced by:  bj-charfun  13550  bj-charfundc  13551
  Copyright terms: Public domain W3C validator