ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss2 Unicode version

Theorem difss2 3264
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difss2  |-  ( A 
C_  ( B  \  C )  ->  A  C_  B )

Proof of Theorem difss2
StepHypRef Expression
1 id 19 . 2  |-  ( A 
C_  ( B  \  C )  ->  A  C_  ( B  \  C
) )
2 difss 3262 . 2  |-  ( B 
\  C )  C_  B
31, 2sstrdi 3168 1  |-  ( A 
C_  ( B  \  C )  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3127    C_ wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143
This theorem is referenced by:  difss2d  3265  ssdifsn  3721  sbthlem1  6956
  Copyright terms: Public domain W3C validator