ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss2 Unicode version

Theorem difss2 3255
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difss2  |-  ( A 
C_  ( B  \  C )  ->  A  C_  B )

Proof of Theorem difss2
StepHypRef Expression
1 id 19 . 2  |-  ( A 
C_  ( B  \  C )  ->  A  C_  ( B  \  C
) )
2 difss 3253 . 2  |-  ( B 
\  C )  C_  B
31, 2sstrdi 3159 1  |-  ( A 
C_  ( B  \  C )  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3118    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134
This theorem is referenced by:  difss2d  3256  ssdifsn  3711  sbthlem1  6934
  Copyright terms: Public domain W3C validator