Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfun Unicode version

Theorem bj-charfun 13342
Description: Properties of the characteristic function on the class  X of the class  A. (Contributed by BJ, 15-Aug-2024.)
Hypothesis
Ref Expression
bj-charfun.1  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
Assertion
Ref Expression
bj-charfun  |-  ( ph  ->  ( ( F : X
--> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X  \  A
) ) ) : ( ( X  i^i  A )  u.  ( X 
\  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
 x )  =  (/) ) ) )
Distinct variable groups:    ph, x    x, X    x, A    x, F

Proof of Theorem bj-charfun
StepHypRef Expression
1 bj-charfun.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
2 fmelpw1o 13341 . . . 4  |-  if ( x  e.  A ,  1o ,  (/) )  e. 
~P 1o
32a1i 9 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e. 
~P 1o )
41, 3fmpt3d 5620 . 2  |-  ( ph  ->  F : X --> ~P 1o )
5 inss1 3327 . . . . 5  |-  ( X  i^i  A )  C_  X
65a1i 9 . . . 4  |-  ( ph  ->  ( X  i^i  A
)  C_  X )
7 difssd 3234 . . . 4  |-  ( ph  ->  ( X  \  A
)  C_  X )
86, 7unssd 3283 . . 3  |-  ( ph  ->  ( ( X  i^i  A )  u.  ( X 
\  A ) ) 
C_  X )
9 elun 3248 . . . . 5  |-  ( x  e.  ( ( X  i^i  A )  u.  ( X  \  A
) )  <->  ( x  e.  ( X  i^i  A
)  \/  x  e.  ( X  \  A
) ) )
10 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  ( X  i^i  A ) )
1110elin1d 3296 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  X )
121adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
13 1oex 6365 . . . . . . . . . . . . 13  |-  1o  e.  _V
14 0ex 4091 . . . . . . . . . . . . 13  |-  (/)  e.  _V
1513, 14ifelpwun 4441 . . . . . . . . . . . 12  |-  if ( x  e.  A ,  1o ,  (/) )  e. 
~P ( 1o  u.  (/) )
1615a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( X  i^i  A
) )  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e. 
~P ( 1o  u.  (/) ) )
1712, 16fvmpt2d 5551 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( X  i^i  A
) )  /\  x  e.  X )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
1811, 17mpdan 418 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
1910elin2d 3297 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  A )
2019iftrued 3512 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  1o )
2118, 20eqtrd 2190 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  1o )
22 1lt2o 6383 . . . . . . . 8  |-  1o  e.  2o
2321, 22eqeltrdi 2248 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  e.  2o )
2423ex 114 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  i^i  A )  ->  ( F `  x )  e.  2o ) )
25 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  x  e.  ( X  \  A ) )
2625eldifad 3113 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  x  e.  X )
271adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
2815a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( X  \  A
) )  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e. 
~P ( 1o  u.  (/) ) )
2927, 28fvmpt2d 5551 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( X  \  A
) )  /\  x  e.  X )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
3026, 29mpdan 418 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
3125eldifbd 3114 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  -.  x  e.  A )
3231iffalsed 3515 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  (/) )
3330, 32eqtrd 2190 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  (/) )
34 0lt2o 6382 . . . . . . . 8  |-  (/)  e.  2o
3533, 34eqeltrdi 2248 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  e.  2o )
3635ex 114 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  \  A )  ->  ( F `  x )  e.  2o ) )
3724, 36jaod 707 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X  i^i  A
)  \/  x  e.  ( X  \  A
) )  ->  ( F `  x )  e.  2o ) )
389, 37syl5bi 151 . . . 4  |-  ( ph  ->  ( x  e.  ( ( X  i^i  A
)  u.  ( X 
\  A ) )  ->  ( F `  x )  e.  2o ) )
3938imp 123 . . 3  |-  ( (
ph  /\  x  e.  ( ( X  i^i  A )  u.  ( X 
\  A ) ) )  ->  ( F `  x )  e.  2o )
404, 8, 39resflem 5628 . 2  |-  ( ph  ->  ( F  |`  (
( X  i^i  A
)  u.  ( X 
\  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o )
4121ralrimiva 2530 . . 3  |-  ( ph  ->  A. x  e.  ( X  i^i  A ) ( F `  x
)  =  1o )
4233ralrimiva 2530 . . 3  |-  ( ph  ->  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) )
4341, 42jca 304 . 2  |-  ( ph  ->  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) )
444, 40, 43jca31 307 1  |-  ( ph  ->  ( ( F : X
--> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X  \  A
) ) ) : ( ( X  i^i  A )  u.  ( X 
\  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
 x )  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1335    e. wcel 2128   A.wral 2435    \ cdif 3099    u. cun 3100    i^i cin 3101    C_ wss 3102   (/)c0 3394   ifcif 3505   ~Pcpw 3543    |-> cmpt 4025    |` cres 4585   -->wf 5163   ` cfv 5167   1oc1o 6350   2oc2o 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-1o 6357  df-2o 6358
This theorem is referenced by:  bj-charfundcALT  13344
  Copyright terms: Public domain W3C validator