Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfun Unicode version

Theorem bj-charfun 14562
Description: Properties of the characteristic function on the class  X of the class  A. (Contributed by BJ, 15-Aug-2024.)
Hypothesis
Ref Expression
bj-charfun.1  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
Assertion
Ref Expression
bj-charfun  |-  ( ph  ->  ( ( F : X
--> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X  \  A
) ) ) : ( ( X  i^i  A )  u.  ( X 
\  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
 x )  =  (/) ) ) )
Distinct variable groups:    ph, x    x, X    x, A    x, F

Proof of Theorem bj-charfun
StepHypRef Expression
1 bj-charfun.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
2 fmelpw1o 14561 . . . 4  |-  if ( x  e.  A ,  1o ,  (/) )  e. 
~P 1o
32a1i 9 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e. 
~P 1o )
41, 3fmpt3d 5673 . 2  |-  ( ph  ->  F : X --> ~P 1o )
5 inss1 3356 . . . . 5  |-  ( X  i^i  A )  C_  X
65a1i 9 . . . 4  |-  ( ph  ->  ( X  i^i  A
)  C_  X )
7 difssd 3263 . . . 4  |-  ( ph  ->  ( X  \  A
)  C_  X )
86, 7unssd 3312 . . 3  |-  ( ph  ->  ( ( X  i^i  A )  u.  ( X 
\  A ) ) 
C_  X )
9 elun 3277 . . . . 5  |-  ( x  e.  ( ( X  i^i  A )  u.  ( X  \  A
) )  <->  ( x  e.  ( X  i^i  A
)  \/  x  e.  ( X  \  A
) ) )
10 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  ( X  i^i  A ) )
1110elin1d 3325 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  X )
121adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
13 1oex 6425 . . . . . . . . . . . . 13  |-  1o  e.  _V
14 0ex 4131 . . . . . . . . . . . . 13  |-  (/)  e.  _V
1513, 14ifelpwun 4484 . . . . . . . . . . . 12  |-  if ( x  e.  A ,  1o ,  (/) )  e. 
~P ( 1o  u.  (/) )
1615a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( X  i^i  A
) )  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e. 
~P ( 1o  u.  (/) ) )
1712, 16fvmpt2d 5603 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( X  i^i  A
) )  /\  x  e.  X )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
1811, 17mpdan 421 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
1910elin2d 3326 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  A )
2019iftrued 3542 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  1o )
2118, 20eqtrd 2210 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  1o )
22 1lt2o 6443 . . . . . . . 8  |-  1o  e.  2o
2321, 22eqeltrdi 2268 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  e.  2o )
2423ex 115 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  i^i  A )  ->  ( F `  x )  e.  2o ) )
25 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  x  e.  ( X  \  A ) )
2625eldifad 3141 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  x  e.  X )
271adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
2815a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( X  \  A
) )  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e. 
~P ( 1o  u.  (/) ) )
2927, 28fvmpt2d 5603 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( X  \  A
) )  /\  x  e.  X )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
3026, 29mpdan 421 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
3125eldifbd 3142 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  -.  x  e.  A )
3231iffalsed 3545 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  (/) )
3330, 32eqtrd 2210 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  (/) )
34 0lt2o 6442 . . . . . . . 8  |-  (/)  e.  2o
3533, 34eqeltrdi 2268 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  e.  2o )
3635ex 115 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  \  A )  ->  ( F `  x )  e.  2o ) )
3724, 36jaod 717 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( X  i^i  A
)  \/  x  e.  ( X  \  A
) )  ->  ( F `  x )  e.  2o ) )
389, 37biimtrid 152 . . . 4  |-  ( ph  ->  ( x  e.  ( ( X  i^i  A
)  u.  ( X 
\  A ) )  ->  ( F `  x )  e.  2o ) )
3938imp 124 . . 3  |-  ( (
ph  /\  x  e.  ( ( X  i^i  A )  u.  ( X 
\  A ) ) )  ->  ( F `  x )  e.  2o )
404, 8, 39resflem 5681 . 2  |-  ( ph  ->  ( F  |`  (
( X  i^i  A
)  u.  ( X 
\  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o )
4121ralrimiva 2550 . . 3  |-  ( ph  ->  A. x  e.  ( X  i^i  A ) ( F `  x
)  =  1o )
4233ralrimiva 2550 . . 3  |-  ( ph  ->  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) )
4341, 42jca 306 . 2  |-  ( ph  ->  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) )
444, 40, 43jca31 309 1  |-  ( ph  ->  ( ( F : X
--> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X  \  A
) ) ) : ( ( X  i^i  A )  u.  ( X 
\  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
 x )  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455    \ cdif 3127    u. cun 3128    i^i cin 3129    C_ wss 3130   (/)c0 3423   ifcif 3535   ~Pcpw 3576    |-> cmpt 4065    |` cres 4629   -->wf 5213   ` cfv 5217   1oc1o 6410   2oc2o 6411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-1o 6417  df-2o 6418
This theorem is referenced by:  bj-charfundcALT  14564
  Copyright terms: Public domain W3C validator