Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundc Unicode version

Theorem bj-charfundc 15021
Description: Properties of the characteristic function on the class  X of the class  A, provided membership in  A is decidable in  X. (Contributed by BJ, 6-Aug-2024.)
Hypotheses
Ref Expression
bj-charfundc.1  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
bj-charfundc.dc  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
Assertion
Ref Expression
bj-charfundc  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Distinct variable groups:    ph, x    x, X
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem bj-charfundc
StepHypRef Expression
1 bj-charfundc.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
2 1lt2o 6467 . . . . 5  |-  1o  e.  2o
32a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  1o  e.  2o )
4 0lt2o 6466 . . . . 5  |-  (/)  e.  2o
54a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (/)  e.  2o )
6 bj-charfundc.dc . . . . 5  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
76r19.21bi 2578 . . . 4  |-  ( (
ph  /\  x  e.  X )  -> DECID  x  e.  A
)
83, 5, 7ifcldcd 3585 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e.  2o )
91, 8fmpt3d 5693 . 2  |-  ( ph  ->  F : X --> 2o )
10 inss1 3370 . . . . . . . 8  |-  ( X  i^i  A )  C_  X
1110a1i 9 . . . . . . 7  |-  ( ph  ->  ( X  i^i  A
)  C_  X )
1211sseld 3169 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  i^i  A )  ->  x  e.  X
) )
1312imdistani 445 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( ph  /\  x  e.  X ) )
141, 8fvmpt2d 5623 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
1513, 14syl 14 . . . 4  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
16 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  ( X  i^i  A ) )
1716elin2d 3340 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  A )
1817iftrued 3556 . . . 4  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  1o )
1915, 18eqtrd 2222 . . 3  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  1o )
2019ralrimiva 2563 . 2  |-  ( ph  ->  A. x  e.  ( X  i^i  A ) ( F `  x
)  =  1o )
21 difssd 3277 . . . . . . 7  |-  ( ph  ->  ( X  \  A
)  C_  X )
2221sseld 3169 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  \  A )  ->  x  e.  X
) )
2322imdistani 445 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( ph  /\  x  e.  X ) )
2423, 14syl 14 . . . 4  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
25 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  x  e.  ( X  \  A ) )
2625eldifbd 3156 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  -.  x  e.  A )
2726iffalsed 3559 . . . 4  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  (/) )
2824, 27eqtrd 2222 . . 3  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  (/) )
2928ralrimiva 2563 . 2  |-  ( ph  ->  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) )
309, 20, 29jca32 310 1  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2160   A.wral 2468    \ cdif 3141    i^i cin 3143    C_ wss 3144   (/)c0 3437   ifcif 3549    |-> cmpt 4079   -->wf 5231   ` cfv 5235   1oc1o 6434   2oc2o 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-1o 6441  df-2o 6442
This theorem is referenced by:  bj-charfunbi  15024
  Copyright terms: Public domain W3C validator