Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundc Unicode version

Theorem bj-charfundc 16171
Description: Properties of the characteristic function on the class  X of the class  A, provided membership in  A is decidable in  X. (Contributed by BJ, 6-Aug-2024.)
Hypotheses
Ref Expression
bj-charfundc.1  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
bj-charfundc.dc  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
Assertion
Ref Expression
bj-charfundc  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Distinct variable groups:    ph, x    x, X
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem bj-charfundc
StepHypRef Expression
1 bj-charfundc.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
2 1lt2o 6588 . . . . 5  |-  1o  e.  2o
32a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  1o  e.  2o )
4 0lt2o 6587 . . . . 5  |-  (/)  e.  2o
54a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (/)  e.  2o )
6 bj-charfundc.dc . . . . 5  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
76r19.21bi 2618 . . . 4  |-  ( (
ph  /\  x  e.  X )  -> DECID  x  e.  A
)
83, 5, 7ifcldcd 3640 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e.  2o )
91, 8fmpt3d 5791 . 2  |-  ( ph  ->  F : X --> 2o )
10 inss1 3424 . . . . . . . 8  |-  ( X  i^i  A )  C_  X
1110a1i 9 . . . . . . 7  |-  ( ph  ->  ( X  i^i  A
)  C_  X )
1211sseld 3223 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  i^i  A )  ->  x  e.  X
) )
1312imdistani 445 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( ph  /\  x  e.  X ) )
141, 8fvmpt2d 5721 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
1513, 14syl 14 . . . 4  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
16 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  ( X  i^i  A ) )
1716elin2d 3394 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  A )
1817iftrued 3609 . . . 4  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  1o )
1915, 18eqtrd 2262 . . 3  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  1o )
2019ralrimiva 2603 . 2  |-  ( ph  ->  A. x  e.  ( X  i^i  A ) ( F `  x
)  =  1o )
21 difssd 3331 . . . . . . 7  |-  ( ph  ->  ( X  \  A
)  C_  X )
2221sseld 3223 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  \  A )  ->  x  e.  X
) )
2322imdistani 445 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( ph  /\  x  e.  X ) )
2423, 14syl 14 . . . 4  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
25 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  x  e.  ( X  \  A ) )
2625eldifbd 3209 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  -.  x  e.  A )
2726iffalsed 3612 . . . 4  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  (/) )
2824, 27eqtrd 2262 . . 3  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  (/) )
2928ralrimiva 2603 . 2  |-  ( ph  ->  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) )
309, 20, 29jca32 310 1  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508    \ cdif 3194    i^i cin 3196    C_ wss 3197   (/)c0 3491   ifcif 3602    |-> cmpt 4145   -->wf 5314   ` cfv 5318   1oc1o 6555   2oc2o 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-1o 6562  df-2o 6563
This theorem is referenced by:  bj-charfunbi  16174
  Copyright terms: Public domain W3C validator