Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundc Unicode version

Theorem bj-charfundc 15748
Description: Properties of the characteristic function on the class  X of the class  A, provided membership in  A is decidable in  X. (Contributed by BJ, 6-Aug-2024.)
Hypotheses
Ref Expression
bj-charfundc.1  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
bj-charfundc.dc  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
Assertion
Ref Expression
bj-charfundc  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Distinct variable groups:    ph, x    x, X
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem bj-charfundc
StepHypRef Expression
1 bj-charfundc.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
2 1lt2o 6528 . . . . 5  |-  1o  e.  2o
32a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  1o  e.  2o )
4 0lt2o 6527 . . . . 5  |-  (/)  e.  2o
54a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (/)  e.  2o )
6 bj-charfundc.dc . . . . 5  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
76r19.21bi 2594 . . . 4  |-  ( (
ph  /\  x  e.  X )  -> DECID  x  e.  A
)
83, 5, 7ifcldcd 3608 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e.  2o )
91, 8fmpt3d 5736 . 2  |-  ( ph  ->  F : X --> 2o )
10 inss1 3393 . . . . . . . 8  |-  ( X  i^i  A )  C_  X
1110a1i 9 . . . . . . 7  |-  ( ph  ->  ( X  i^i  A
)  C_  X )
1211sseld 3192 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  i^i  A )  ->  x  e.  X
) )
1312imdistani 445 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( ph  /\  x  e.  X ) )
141, 8fvmpt2d 5666 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
1513, 14syl 14 . . . 4  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
16 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  ( X  i^i  A ) )
1716elin2d 3363 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  A )
1817iftrued 3578 . . . 4  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  1o )
1915, 18eqtrd 2238 . . 3  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  1o )
2019ralrimiva 2579 . 2  |-  ( ph  ->  A. x  e.  ( X  i^i  A ) ( F `  x
)  =  1o )
21 difssd 3300 . . . . . . 7  |-  ( ph  ->  ( X  \  A
)  C_  X )
2221sseld 3192 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  \  A )  ->  x  e.  X
) )
2322imdistani 445 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( ph  /\  x  e.  X ) )
2423, 14syl 14 . . . 4  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
25 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  x  e.  ( X  \  A ) )
2625eldifbd 3178 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  -.  x  e.  A )
2726iffalsed 3581 . . . 4  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  (/) )
2824, 27eqtrd 2238 . . 3  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  (/) )
2928ralrimiva 2579 . 2  |-  ( ph  ->  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) )
309, 20, 29jca32 310 1  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484    \ cdif 3163    i^i cin 3165    C_ wss 3166   (/)c0 3460   ifcif 3571    |-> cmpt 4105   -->wf 5267   ` cfv 5271   1oc1o 6495   2oc2o 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-1o 6502  df-2o 6503
This theorem is referenced by:  bj-charfunbi  15751
  Copyright terms: Public domain W3C validator