Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundc Unicode version

Theorem bj-charfundc 14563
Description: Properties of the characteristic function on the class  X of the class  A, provided membership in  A is decidable in  X. (Contributed by BJ, 6-Aug-2024.)
Hypotheses
Ref Expression
bj-charfundc.1  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
bj-charfundc.dc  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
Assertion
Ref Expression
bj-charfundc  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Distinct variable groups:    ph, x    x, X
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem bj-charfundc
StepHypRef Expression
1 bj-charfundc.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
2 1lt2o 6443 . . . . 5  |-  1o  e.  2o
32a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  1o  e.  2o )
4 0lt2o 6442 . . . . 5  |-  (/)  e.  2o
54a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (/)  e.  2o )
6 bj-charfundc.dc . . . . 5  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
76r19.21bi 2565 . . . 4  |-  ( (
ph  /\  x  e.  X )  -> DECID  x  e.  A
)
83, 5, 7ifcldcd 3571 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  if ( x  e.  A ,  1o ,  (/) )  e.  2o )
91, 8fmpt3d 5673 . 2  |-  ( ph  ->  F : X --> 2o )
10 inss1 3356 . . . . . . . 8  |-  ( X  i^i  A )  C_  X
1110a1i 9 . . . . . . 7  |-  ( ph  ->  ( X  i^i  A
)  C_  X )
1211sseld 3155 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  i^i  A )  ->  x  e.  X
) )
1312imdistani 445 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( ph  /\  x  e.  X ) )
141, 8fvmpt2d 5603 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
1513, 14syl 14 . . . 4  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
16 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  ( X  i^i  A ) )
1716elin2d 3326 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  x  e.  A )
1817iftrued 3542 . . . 4  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  1o )
1915, 18eqtrd 2210 . . 3  |-  ( (
ph  /\  x  e.  ( X  i^i  A ) )  ->  ( F `  x )  =  1o )
2019ralrimiva 2550 . 2  |-  ( ph  ->  A. x  e.  ( X  i^i  A ) ( F `  x
)  =  1o )
21 difssd 3263 . . . . . . 7  |-  ( ph  ->  ( X  \  A
)  C_  X )
2221sseld 3155 . . . . . 6  |-  ( ph  ->  ( x  e.  ( X  \  A )  ->  x  e.  X
) )
2322imdistani 445 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( ph  /\  x  e.  X ) )
2423, 14syl 14 . . . 4  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  if ( x  e.  A ,  1o ,  (/) ) )
25 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  x  e.  ( X  \  A ) )
2625eldifbd 3142 . . . . 5  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  -.  x  e.  A )
2726iffalsed 3545 . . . 4  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  if (
x  e.  A ,  1o ,  (/) )  =  (/) )
2824, 27eqtrd 2210 . . 3  |-  ( (
ph  /\  x  e.  ( X  \  A ) )  ->  ( F `  x )  =  (/) )
2928ralrimiva 2550 . 2  |-  ( ph  ->  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) )
309, 20, 29jca32 310 1  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455    \ cdif 3127    i^i cin 3129    C_ wss 3130   (/)c0 3423   ifcif 3535    |-> cmpt 4065   -->wf 5213   ` cfv 5217   1oc1o 6410   2oc2o 6411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-1o 6417  df-2o 6418
This theorem is referenced by:  bj-charfunbi  14566
  Copyright terms: Public domain W3C validator