ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difssd GIF version

Theorem difssd 3300
Description: A difference of two classes is contained in the minuend. Deduction form of difss 3299. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difssd (𝜑 → (𝐴𝐵) ⊆ 𝐴)

Proof of Theorem difssd
StepHypRef Expression
1 difss 3299 . 2 (𝐴𝐵) ⊆ 𝐴
21a1i 9 1 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  cdif 3163  wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179
This theorem is referenced by:  bj-charfun  15743  bj-charfundc  15744
  Copyright terms: Public domain W3C validator