ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difssd GIF version

Theorem difssd 3260
Description: A difference of two classes is contained in the minuend. Deduction form of difss 3259. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difssd (𝜑 → (𝐴𝐵) ⊆ 𝐴)

Proof of Theorem difssd
StepHypRef Expression
1 difss 3259 . 2 (𝐴𝐵) ⊆ 𝐴
21a1i 9 1 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  cdif 3124  wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-dif 3129  df-in 3133  df-ss 3140
This theorem is referenced by:  bj-charfun  14099  bj-charfundc  14100
  Copyright terms: Public domain W3C validator