Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difssd | GIF version |
Description: A difference of two classes is contained in the minuend. Deduction form of difss 3259. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difssd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3259 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∖ cdif 3124 ⊆ wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 |
This theorem is referenced by: bj-charfun 14099 bj-charfundc 14100 |
Copyright terms: Public domain | W3C validator |