ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjeq1d Unicode version

Theorem disjeq1d 4018
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
disjeq1d  |-  ( ph  ->  (Disj  x  e.  A  C 
<-> Disj  x  e.  B  C
) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem disjeq1d
StepHypRef Expression
1 disjeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 disjeq1 4017 . 2  |-  ( A  =  B  ->  (Disj  x  e.  A  C  <-> Disj  x  e.  B  C ) )
31, 2syl 14 1  |-  ( ph  ->  (Disj  x  e.  A  C 
<-> Disj  x  e.  B  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-rmo 2483  df-in 3163  df-ss 3170  df-disj 4011
This theorem is referenced by:  disjeq12d  4019
  Copyright terms: Public domain W3C validator