ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjeq1 Unicode version

Theorem disjeq1 4013
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq1  |-  ( A  =  B  ->  (Disj  x  e.  A  C  <-> Disj  x  e.  B  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem disjeq1
StepHypRef Expression
1 eqimss2 3234 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 disjss1 4012 . . 3  |-  ( B 
C_  A  ->  (Disj  x  e.  A  C  -> Disj  x  e.  B  C ) )
31, 2syl 14 . 2  |-  ( A  =  B  ->  (Disj  x  e.  A  C  -> Disj  x  e.  B  C ) )
4 eqimss 3233 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 disjss1 4012 . . 3  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
64, 5syl 14 . 2  |-  ( A  =  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
73, 6impbid 129 1  |-  ( A  =  B  ->  (Disj  x  e.  A  C  <-> Disj  x  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    C_ wss 3153  Disj wdisj 4006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-rmo 2480  df-in 3159  df-ss 3166  df-disj 4007
This theorem is referenced by:  disjeq1d  4014
  Copyright terms: Public domain W3C validator