Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjeq12d | Unicode version |
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjeq1d.1 | |
disjeq12d.1 |
Ref | Expression |
---|---|
disjeq12d | Disj Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeq1d.1 | . . 3 | |
2 | 1 | disjeq1d 3966 | . 2 Disj Disj |
3 | disjeq12d.1 | . . . 4 | |
4 | 3 | adantr 274 | . . 3 |
5 | 4 | disjeq2dv 3963 | . 2 Disj Disj |
6 | 2, 5 | bitrd 187 | 1 Disj Disj |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 Disj wdisj 3958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2448 df-rmo 2451 df-in 3121 df-ss 3128 df-disj 3959 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |