ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drnfc1 Unicode version

Theorem drnfc1 2334
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
drnfc1.1  |-  ( A. x  x  =  y  ->  A  =  B )
Assertion
Ref Expression
drnfc1  |-  ( A. x  x  =  y  ->  ( F/_ x A  <->  F/_ y B ) )

Proof of Theorem drnfc1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5  |-  ( A. x  x  =  y  ->  A  =  B )
21eleq2d 2245 . . . 4  |-  ( A. x  x  =  y  ->  ( w  e.  A  <->  w  e.  B ) )
32drnf1 1731 . . 3  |-  ( A. x  x  =  y  ->  ( F/ x  w  e.  A  <->  F/ y  w  e.  B )
)
43dral2 1729 . 2  |-  ( A. x  x  =  y  ->  ( A. w F/ x  w  e.  A  <->  A. w F/ y  w  e.  B ) )
5 df-nfc 2306 . 2  |-  ( F/_ x A  <->  A. w F/ x  w  e.  A )
6 df-nfc 2306 . 2  |-  ( F/_ y B  <->  A. w F/ y  w  e.  B )
74, 5, 63bitr4g 223 1  |-  ( A. x  x  =  y  ->  ( F/_ x A  <->  F/_ y B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353   F/wnf 1458    e. wcel 2146   F/_wnfc 2304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-cleq 2168  df-clel 2171  df-nfc 2306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator