ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drnfc1 GIF version

Theorem drnfc1 2369
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
drnfc1.1 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
drnfc1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))

Proof of Theorem drnfc1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
21eleq2d 2279 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑤𝐴𝑤𝐵))
32drnf1 1759 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤𝐴 ↔ Ⅎ𝑦 𝑤𝐵))
43dral2 1757 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤𝐴 ↔ ∀𝑤𝑦 𝑤𝐵))
5 df-nfc 2341 . 2 (𝑥𝐴 ↔ ∀𝑤𝑥 𝑤𝐴)
6 df-nfc 2341 . 2 (𝑦𝐵 ↔ ∀𝑤𝑦 𝑤𝐵)
74, 5, 63bitr4g 223 1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1373   = wceq 1375  wnf 1486  wcel 2180  wnfc 2339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-cleq 2202  df-clel 2205  df-nfc 2341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator