ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drnfc1 GIF version

Theorem drnfc1 2353
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
drnfc1.1 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
drnfc1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))

Proof of Theorem drnfc1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
21eleq2d 2263 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑤𝐴𝑤𝐵))
32drnf1 1744 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤𝐴 ↔ Ⅎ𝑦 𝑤𝐵))
43dral2 1742 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤𝐴 ↔ ∀𝑤𝑦 𝑤𝐵))
5 df-nfc 2325 . 2 (𝑥𝐴 ↔ ∀𝑤𝑥 𝑤𝐴)
6 df-nfc 2325 . 2 (𝑦𝐵 ↔ ∀𝑤𝑦 𝑤𝐵)
74, 5, 63bitr4g 223 1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wnf 1471  wcel 2164  wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-cleq 2186  df-clel 2189  df-nfc 2325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator