ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drnfc2 Unicode version

Theorem drnfc2 2326
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
drnfc1.1  |-  ( A. x  x  =  y  ->  A  =  B )
Assertion
Ref Expression
drnfc2  |-  ( A. x  x  =  y  ->  ( F/_ z A  <->  F/_ z B ) )

Proof of Theorem drnfc2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5  |-  ( A. x  x  =  y  ->  A  =  B )
21eleq2d 2236 . . . 4  |-  ( A. x  x  =  y  ->  ( w  e.  A  <->  w  e.  B ) )
32drnf2 1722 . . 3  |-  ( A. x  x  =  y  ->  ( F/ z  w  e.  A  <->  F/ z  w  e.  B )
)
43dral2 1719 . 2  |-  ( A. x  x  =  y  ->  ( A. w F/ z  w  e.  A  <->  A. w F/ z  w  e.  B ) )
5 df-nfc 2297 . 2  |-  ( F/_ z A  <->  A. w F/ z  w  e.  A )
6 df-nfc 2297 . 2  |-  ( F/_ z B  <->  A. w F/ z  w  e.  B )
74, 5, 63bitr4g 222 1  |-  ( A. x  x  =  y  ->  ( F/_ z A  <->  F/_ z B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343   F/wnf 1448    e. wcel 2136   F/_wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-nfc 2297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator