Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > drnfc2 | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
drnfc1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
drnfc2 | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnfc1.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2240 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) |
3 | 2 | drnf2 1727 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧 𝑤 ∈ 𝐴 ↔ Ⅎ𝑧 𝑤 ∈ 𝐵)) |
4 | 3 | dral2 1724 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐴 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐵)) |
5 | df-nfc 2301 | . 2 ⊢ (Ⅎ𝑧𝐴 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐴) | |
6 | df-nfc 2301 | . 2 ⊢ (Ⅎ𝑧𝐵 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-cleq 2163 df-clel 2166 df-nfc 2301 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |