Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > drnfc2 | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
drnfc1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
drnfc2 | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnfc1.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2245 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) |
3 | 2 | drnf2 1732 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧 𝑤 ∈ 𝐴 ↔ Ⅎ𝑧 𝑤 ∈ 𝐵)) |
4 | 3 | dral2 1729 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐴 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐵)) |
5 | df-nfc 2306 | . 2 ⊢ (Ⅎ𝑧𝐴 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐴) | |
6 | df-nfc 2306 | . 2 ⊢ (Ⅎ𝑧𝐵 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 Ⅎwnf 1458 ∈ wcel 2146 Ⅎwnfc 2304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-cleq 2168 df-clel 2171 df-nfc 2306 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |