ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drnfc2 GIF version

Theorem drnfc2 2335
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
drnfc1.1 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
drnfc2 (∀𝑥 𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))

Proof of Theorem drnfc2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
21eleq2d 2245 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑤𝐴𝑤𝐵))
32drnf2 1732 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧 𝑤𝐴 ↔ Ⅎ𝑧 𝑤𝐵))
43dral2 1729 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑧 𝑤𝐴 ↔ ∀𝑤𝑧 𝑤𝐵))
5 df-nfc 2306 . 2 (𝑧𝐴 ↔ ∀𝑤𝑧 𝑤𝐴)
6 df-nfc 2306 . 2 (𝑧𝐵 ↔ ∀𝑤𝑧 𝑤𝐵)
74, 5, 63bitr4g 223 1 (∀𝑥 𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351   = wceq 1353  wnf 1458  wcel 2146  wnfc 2304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-cleq 2168  df-clel 2171  df-nfc 2306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator