| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > drnfc2 | GIF version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| drnfc1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| drnfc2 | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnfc1.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2299 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) |
| 3 | 2 | drnf2 1780 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧 𝑤 ∈ 𝐴 ↔ Ⅎ𝑧 𝑤 ∈ 𝐵)) |
| 4 | 3 | dral2 1777 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐴 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐵)) |
| 5 | df-nfc 2361 | . 2 ⊢ (Ⅎ𝑧𝐴 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐴) | |
| 6 | df-nfc 2361 | . 2 ⊢ (Ⅎ𝑧𝐵 ↔ ∀𝑤Ⅎ𝑧 𝑤 ∈ 𝐵) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝐴 ↔ Ⅎ𝑧𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |