ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveel1 Unicode version

Theorem dveel1 2157
Description: Quantifier introduction when one pair of variables is disjoint. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveel1  |-  ( -. 
A. x  x  =  y  ->  ( y  e.  z  ->  A. x  y  e.  z )
)
Distinct variable group:    x, z

Proof of Theorem dveel1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax-17 1526 . 2  |-  ( w  e.  z  ->  A. x  w  e.  z )
2 ax-17 1526 . 2  |-  ( y  e.  z  ->  A. w  y  e.  z )
3 elequ1 2152 . 2  |-  ( w  =  y  ->  (
w  e.  z  <->  y  e.  z ) )
41, 2, 3dvelimf 2015 1  |-  ( -. 
A. x  x  =  y  ->  ( y  e.  z  ->  A. x  y  e.  z )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator