ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveel1 Unicode version

Theorem dveel1 2145
Description: Quantifier introduction when one pair of variables is disjoint. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveel1  |-  ( -. 
A. x  x  =  y  ->  ( y  e.  z  ->  A. x  y  e.  z )
)
Distinct variable group:    x, z

Proof of Theorem dveel1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax-17 1514 . 2  |-  ( w  e.  z  ->  A. x  w  e.  z )
2 ax-17 1514 . 2  |-  ( y  e.  z  ->  A. w  y  e.  z )
3 elequ1 2140 . 2  |-  ( w  =  y  ->  (
w  e.  z  <->  y  e.  z ) )
41, 2, 3dvelimf 2003 1  |-  ( -. 
A. x  x  =  y  ->  ( y  e.  z  ->  A. x  y  e.  z )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator