ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveel1 GIF version

Theorem dveel1 2209
Description: Quantifier introduction when one pair of variables is disjoint. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveel1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦𝑧 → ∀𝑥 𝑦𝑧))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveel1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-17 1572 . 2 (𝑤𝑧 → ∀𝑥 𝑤𝑧)
2 ax-17 1572 . 2 (𝑦𝑧 → ∀𝑤 𝑦𝑧)
3 elequ1 2204 . 2 (𝑤 = 𝑦 → (𝑤𝑧𝑦𝑧))
41, 2, 3dvelimf 2066 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦𝑧 → ∀𝑥 𝑦𝑧))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator