ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveel1 GIF version

Theorem dveel1 2150
Description: Quantifier introduction when one pair of variables is disjoint. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveel1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦𝑧 → ∀𝑥 𝑦𝑧))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveel1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-17 1519 . 2 (𝑤𝑧 → ∀𝑥 𝑤𝑧)
2 ax-17 1519 . 2 (𝑦𝑧 → ∀𝑤 𝑦𝑧)
3 elequ1 2145 . 2 (𝑤 = 𝑦 → (𝑤𝑧𝑦𝑧))
41, 2, 3dvelimf 2008 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦𝑧 → ∀𝑥 𝑦𝑧))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator