Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsb2 | Unicode version |
Description: Substitution for the second argument of the non-logical predicate in an atomic formula. See elsb1 2153 for substitution for the first argument. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
elsb2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1524 | . . . . 5 | |
2 | elequ2 2151 | . . . . 5 | |
3 | 1, 2 | sbieh 1788 | . . . 4 |
4 | 3 | sbbii 1763 | . . 3 |
5 | ax-17 1524 | . . . 4 | |
6 | 5 | sbco2h 1962 | . . 3 |
7 | 4, 6 | bitr3i 186 | . 2 |
8 | equsb1 1783 | . . . 4 | |
9 | elequ2 2151 | . . . . 5 | |
10 | 9 | sbimi 1762 | . . . 4 |
11 | 8, 10 | ax-mp 5 | . . 3 |
12 | sbbi 1957 | . . 3 | |
13 | 11, 12 | mpbi 145 | . 2 |
14 | ax-17 1524 | . . 3 | |
15 | 14 | sbh 1774 | . 2 |
16 | 7, 13, 15 | 3bitri 206 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |